forked from lazyprogrammer/machine_learning_examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn_theano.py
224 lines (181 loc) · 7.12 KB
/
cnn_theano.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# https://deeplearningcourses.com/c/deep-learning-convolutional-neural-networks-theano-tensorflow
# https://udemy.com/deep-learning-convolutional-neural-networks-theano-tensorflow
import numpy as np
import theano
import theano.tensor as T
import matplotlib.pyplot as plt
from theano.tensor.nnet import conv2d
from theano.tensor.signal import downsample
from scipy.io import loadmat
from sklearn.utils import shuffle
from datetime import datetime
def error_rate(p, t):
return np.mean(p != t)
def relu(a):
return a * (a > 0)
def y2indicator(y):
N = len(y)
ind = np.zeros((N, 10))
for i in xrange(N):
ind[i, y[i]] = 1
return ind
def convpool(X, W, b, poolsize=(2, 2)):
conv_out = conv2d(input=X, filters=W)
# downsample each feature map individually, using maxpooling
pooled_out = downsample.max_pool_2d(
input=conv_out,
ds=poolsize,
ignore_border=True
)
# add the bias term. Since the bias is a vector (1D array), we first
# reshape it to a tensor of shape (1, n_filters, 1, 1). Each bias will
# thus be broadcasted across mini-batches and feature map
# width & height
# return T.tanh(pooled_out + b.dimshuffle('x', 0, 'x', 'x'))
return relu(pooled_out + b.dimshuffle('x', 0, 'x', 'x'))
def init_filter(shape, poolsz):
w = np.random.randn(*shape) / np.sqrt(np.prod(shape[1:]) + shape[0]*np.prod(shape[2:] / np.prod(poolsz)))
return w.astype(np.float32)
def rearrange(X):
# input is (32, 32, 3, N)
# output is (N, 3, 32, 32)
N = X.shape[-1]
out = np.zeros((N, 3, 32, 32), dtype=np.float32)
for i in xrange(N):
for j in xrange(3):
out[i, j, :, :] = X[:, :, j, i]
return out / 255
def main():
# step 1: load the data, transform as needed
train = loadmat('../large_files/train_32x32.mat')
test = loadmat('../large_files/test_32x32.mat')
# Need to scale! don't leave as 0..255
# Y is a N x 1 matrix with values 1..10 (MATLAB indexes by 1)
# So flatten it and make it 0..9
# Also need indicator matrix for cost calculation
Xtrain = rearrange(train['X'])
Ytrain = train['y'].flatten() - 1
del train
Xtrain, Ytrain = shuffle(Xtrain, Ytrain)
Ytrain_ind = y2indicator(Ytrain)
Xtest = rearrange(test['X'])
Ytest = test['y'].flatten() - 1
del test
Ytest_ind = y2indicator(Ytest)
max_iter = 8
print_period = 10
lr = np.float32(0.00001)
reg = np.float32(0.01)
mu = np.float32(0.99)
N = Xtrain.shape[0]
batch_sz = 500
n_batches = N / batch_sz
M = 500
K = 10
poolsz = (2, 2)
# after conv will be of dimension 32 - 5 + 1 = 28
# after downsample 28 / 2 = 14
W1_shape = (20, 3, 5, 5) # (num_feature_maps, num_color_channels, filter_width, filter_height)
W1_init = init_filter(W1_shape, poolsz)
b1_init = np.zeros(W1_shape[0], dtype=np.float32) # one bias per output feature map
# after conv will be of dimension 14 - 5 + 1 = 10
# after downsample 10 / 2 = 5
W2_shape = (50, 20, 5, 5) # (num_feature_maps, old_num_feature_maps, filter_width, filter_height)
W2_init = init_filter(W2_shape, poolsz)
b2_init = np.zeros(W2_shape[0], dtype=np.float32)
# vanilla ANN weights
W3_init = np.random.randn(W2_shape[0]*5*5, M) / np.sqrt(W2_shape[0]*5*5 + M)
b3_init = np.zeros(M, dtype=np.float32)
W4_init = np.random.randn(M, K) / np.sqrt(M + K)
b4_init = np.zeros(K, dtype=np.float32)
# step 2: define theano variables and expressions
X = T.tensor4('X', dtype='float32')
Y = T.matrix('T')
W1 = theano.shared(W1_init, 'W1')
b1 = theano.shared(b1_init, 'b1')
W2 = theano.shared(W2_init, 'W2')
b2 = theano.shared(b2_init, 'b2')
W3 = theano.shared(W3_init.astype(np.float32), 'W3')
b3 = theano.shared(b3_init, 'b3')
W4 = theano.shared(W4_init.astype(np.float32), 'W4')
b4 = theano.shared(b4_init, 'b4')
# momentum changes
dW1 = theano.shared(np.zeros(W1_init.shape, dtype=np.float32), 'dW1')
db1 = theano.shared(np.zeros(b1_init.shape, dtype=np.float32), 'db1')
dW2 = theano.shared(np.zeros(W2_init.shape, dtype=np.float32), 'dW2')
db2 = theano.shared(np.zeros(b2_init.shape, dtype=np.float32), 'db2')
dW3 = theano.shared(np.zeros(W3_init.shape, dtype=np.float32), 'dW3')
db3 = theano.shared(np.zeros(b3_init.shape, dtype=np.float32), 'db3')
dW4 = theano.shared(np.zeros(W4_init.shape, dtype=np.float32), 'dW4')
db4 = theano.shared(np.zeros(b4_init.shape, dtype=np.float32), 'db4')
# forward pass
Z1 = convpool(X, W1, b1)
Z2 = convpool(Z1, W2, b2)
Z3 = relu(Z2.flatten(ndim=2).dot(W3) + b3)
pY = T.nnet.softmax( Z3.dot(W4) + b4)
# define the cost function and prediction
params = (W1, b1, W2, b2, W3, b3, W4, b4)
reg_cost = reg*np.sum((param*param).sum() for param in params)
cost = -(Y * T.log(pY)).sum() + reg_cost
prediction = T.argmax(pY, axis=1)
# step 3: training expressions and functions
update_W1 = W1 + mu*dW1 - lr*T.grad(cost, W1)
update_b1 = b1 + mu*db1 - lr*T.grad(cost, b1)
update_W2 = W2 + mu*dW2 - lr*T.grad(cost, W2)
update_b2 = b2 + mu*db2 - lr*T.grad(cost, b2)
update_W3 = W3 + mu*dW3 - lr*T.grad(cost, W3)
update_b3 = b3 + mu*db3 - lr*T.grad(cost, b3)
update_W4 = W4 + mu*dW4 - lr*T.grad(cost, W4)
update_b4 = b4 + mu*db4 - lr*T.grad(cost, b4)
# update weight changes
update_dW1 = mu*dW1 - lr*T.grad(cost, W1)
update_db1 = mu*db1 - lr*T.grad(cost, b1)
update_dW2 = mu*dW2 - lr*T.grad(cost, W2)
update_db2 = mu*db2 - lr*T.grad(cost, b2)
update_dW3 = mu*dW3 - lr*T.grad(cost, W3)
update_db3 = mu*db3 - lr*T.grad(cost, b3)
update_dW4 = mu*dW4 - lr*T.grad(cost, W4)
update_db4 = mu*db4 - lr*T.grad(cost, b4)
train = theano.function(
inputs=[X, Y],
updates=[
(W1, update_W1),
(b1, update_b1),
(W2, update_W2),
(b2, update_b2),
(W3, update_W3),
(b3, update_b3),
(W4, update_W4),
(b4, update_b4),
(dW1, update_dW1),
(db1, update_db1),
(dW2, update_dW2),
(db2, update_db2),
(dW3, update_dW3),
(db3, update_db3),
(dW4, update_dW4),
(db4, update_db4),
],
)
# create another function for this because we want it over the whole dataset
get_prediction = theano.function(
inputs=[X, Y],
outputs=[cost, prediction],
)
t0 = datetime.now()
LL = []
for i in xrange(max_iter):
for j in xrange(n_batches):
Xbatch = Xtrain[j*batch_sz:(j*batch_sz + batch_sz),]
Ybatch = Ytrain_ind[j*batch_sz:(j*batch_sz + batch_sz),]
train(Xbatch, Ybatch)
if j % print_period == 0:
cost_val, prediction_val = get_prediction(Xtest, Ytest_ind)
err = error_rate(prediction_val, Ytest)
print "Cost / err at iteration i=%d, j=%d: %.3f / %.3f" % (i, j, cost_val, err)
LL.append(cost_val)
print "Elapsed time:", (datetime.now() - t0)
plt.plot(LL)
plt.show()
if __name__ == '__main__':
main()