forked from variar/elp2000-82b
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathseries.h
78 lines (71 loc) · 3.78 KB
/
series.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
/*
* series.h
* Created by Serhii Tsyba (sertsy@gmail.com) on 08.06.10.
*
* This file contains routines to compute series of the ELP theory. Expressions for the series are
*
* A{sin|cos}(i₁D + i₂l' + i₃l + i₄F)
*
* for the Main Problem, where sine is used when computing longitual and latitudal variables and cosine when computing
* radial distance. For the sake of simplicity two separate are given for both sine and cosine expressions.
*
* Asin(i₁ζ + i₂D + i₃l' + i₄l + i₅F + φ)
*
* for Earth figure, Moon figure, relativistic perturbations, tidal effects and second order planetary perturbations.
* For series other than of Earth figure perturbations multiplier i₁ is always zero.
*
* Asin(i₁Me + i₂V + i₃T + i₄Ma + i₅J + i₆S + i₇U + i₈N + i₉D + i₁₀l + i₁₁F + φ)
*
* for the first type of planetary perturbations.
*
* Asin(i₁Me + i₂V + i₃T + i₄Ma + i₅J + i₆S + i₇U + i₈D + i₉l + i₁₀l' + i₁₁F + φ)
*
* for the second type of planetary perturbations.
*
* For each of the above mentioned series a separate function is given. Each function deals with one dimensional
* arrays for multipliers and coefficiens. Adopted indexing of the arguments may be seen from definitions of
* corresponding arrays.
*
* The last argument of each function corresponds to the size of the serie. Note, that size of the serie does not
* match with the length of the multipliers or coefficients arrays, which is rather a multiple of it, depending on the
* amount of arguments in each of these arrays. Use provided size definitions for each of the arrays for convinience.
*/
#ifndef SERIES_H
#define SERIES_H
/*
* Computes a sine Fourier serie for the Main Problem of the ELP theory given the Delaunay arguments, array of
* mutipliers, array of coefficients and the size of the serie.
*
* Source: Lunar Solution ELP 2000-82B. Explanatory note, p. 2
*/
double compute_serie_a_sin(double delaunay_arguments[], int multipliers[], double coefficients[], int n);
/*
* Computes a cosine Fourier serie for the Main Problem of the ELP theory given the Delaunay arguments, array of
* mutipliers, array of coefficients and the size of the serie.
*
* Source: Lunar Solution ELP 2000-82B. Explanatory note, p. 2
*/
double compute_serie_a_cos(double delaunay_arguments[], int multipliers[], double coefficients[], int n);
/*
* Computes a Poisson serie for either Earth figure perturbations, Moon figure perturbations, relativistic
* perturbations, tidal effects or second order planetary perturbations of the ELP theory given planetary arguments,
* delaunay arguments, array of mutipliers, array of coefficients and the size of the serie.
*
* Source: Lunar Solution ELP 2000-82B. Explanatory note, p. 2
*/
double compute_serie_b(double precession, double delaunay_arguments[], int multipliers[], double coefficients[], int n);
/*
* Computes a Poisson serie for the first type of planetary perturbations of the ELP theory given planetary arguments,
* delaunay arguments, array of mutipliers, array of coefficients and the size of the serie.
*
* Source: Lunar Solution ELP 2000-82B. Explanatory note, p. 3
*/
double compute_serie_c(double planetary_arguments[], double delaunay_arguments[], int multipliers[], double coefficients[], int n);
/*
* Computes a Poisson serie for the second type of planetary perturbations of the ELP theory given planetary arguments,
* delaunay arguments, array of mutipliers, array of coefficients and the size of the serie.
*
* Source: Lunar Solution ELP 2000-82B. Explanatory note, p. 3
*/
double compute_serie_d(double planetary_arguments[], double delaunay_arguments[], int multipliers[], double coefficients[], int n);
#endif // SERIES_H