forked from variar/elp2000-82b
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathelp2000-82b.c
executable file
·228 lines (186 loc) · 13.5 KB
/
elp2000-82b.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
/*
* elp2000.c
* Created by Serhii Tsyba (sertsy@gmail.com) on 21.04.10.
*/
#include "mainprob.h"
#include "earthfig.h"
#include "planetary1.h"
#include "planetary2.h"
#include "tidal.h"
#include "moonfig.h"
#include "relativistic.h"
#include "solarecc.h"
#include "elp2000-82b.h"
#include "series.h"
#include "arguments.h"
#include <math.h>
spherical_point geocentric_moon_position(double t)
{
double delaunay_arguments[TOTAL_DELAUNAY_ARGUMENTS]; // Delaunay arguments
double elp2000_arguments[TOTAL_ELP2000_ARGUMENTS]; // ELP2000 arguments
double planetary_arguments[TOTAL_PLANETARY_ARGUMENTS]; // planetary arguments
double zeta; // argument of the precession precession (ζ)
spherical_point sp; // result position of the Moon
// each coordinate (longitude, latitude and radial distance) is computed by adding together results of each serie:
// Main Porblem and all perturbations; then, Moon's mean mean longitude (W₁) must be added to the value of the
// longitude to find the actual position
// computing Delaunay arguments (non reduced)
compute_delaunay_arguments(t, FULL_SERIES_TOTAL_TERMS, delaunay_arguments);
// computing Main Problem
sp.longitude = compute_serie_a_sin(delaunay_arguments, main_problem_longitude_multipliers,
main_problem_longitude_coefficients, TOTAL_MAIN_PROBLEM_LONGITUDE_TERMS);
sp.latitude = compute_serie_a_sin(delaunay_arguments, main_problem_latitude_multipliers,
main_problem_latitude_coefficients, TOTAL_MAIN_PROBLEM_LATITUDE_TERMS);
sp.distance = compute_serie_a_cos(delaunay_arguments, main_problem_distance_multipliers,
main_problem_distance_coefficients, TOTAL_MAIN_PROBLEM_DISTANCE_TERMS);
// recomputing reduced Delaunay arguments
compute_delaunay_arguments(t, LINEAR_SERIES_TOTAL_TERMS, delaunay_arguments);
// computing ELP2000 arguments
compute_elp2000_arguments(t, LINEAR_SERIES_TOTAL_TERMS, elp2000_arguments);
// computing precession argument
zeta = compute_precession_argument(t);
// computing Earth figure perturbations (constant)
sp.longitude += compute_serie_b(zeta, delaunay_arguments, earth_figure_longitude_0_multipliers,
earth_figure_longitude_0_coefficients, TOTAL_EARTH_FIGURE_LONGITUDE_0_TERMS);
sp.latitude += compute_serie_b(zeta, delaunay_arguments, earth_figure_latitude_0_multipliers,
earth_figure_latitude_0_coefficients, TOTAL_EARTH_FIGURE_LATITUDE_0_TERMS);
sp.distance += compute_serie_b(zeta, delaunay_arguments, earth_figure_distance_0_multipliers,
earth_figure_distance_0_coefficients, TOTAL_EARTH_FIGURE_DISTANCE_0_TERMS);
// computing Earth figure perturbations (linear)
sp.longitude += compute_serie_b(zeta, delaunay_arguments, earth_figure_longitude_0_multipliers,
earth_figure_longitude_0_coefficients, TOTAL_EARTH_FIGURE_LONGITUDE_0_TERMS) * t;
sp.latitude += compute_serie_b(zeta, delaunay_arguments, earth_figure_latitude_0_multipliers,
earth_figure_latitude_0_coefficients, TOTAL_EARTH_FIGURE_LATITUDE_0_TERMS) * t;
sp.distance += compute_serie_b(zeta, delaunay_arguments, earth_figure_distance_0_multipliers,
earth_figure_distance_0_coefficients,TOTAL_EARTH_FIGURE_DISTANCE_0_TERMS) * t;
// computing planetary arguments
compute_planetary_arguments(t, planetary_arguments);
// computing planetary 1 perturbations (constant)
sp.longitude += compute_serie_c(planetary_arguments, delaunay_arguments, planetary1_longitude_0_multipliers,
planetary1_longitude_0_coefficients, TOTAL_PLANETARY1_LONGITUDE_0_TERMS);
sp.latitude += compute_serie_c(planetary_arguments, delaunay_arguments, planetary1_latitude_0_multipliers,
planetary1_latitude_0_coefficients, TOTAL_PLANETARY1_LATITUDE_0_TERMS);
sp.distance += compute_serie_c(planetary_arguments, delaunay_arguments, planetary1_distance_0_multipliers,
planetary1_distance_0_coefficients, TOTAL_PLANETARY1_DISTANCE_0_TERMS);
// computing planetary 1 perturbations (linear)
sp.longitude += compute_serie_c(planetary_arguments, delaunay_arguments, planetary1_longitude_1_multipliers,
planetary1_longitude_1_coefficients, TOTAL_PLANETARY1_LONGITUDE_1_TERMS) * t;
sp.latitude += compute_serie_c(planetary_arguments, delaunay_arguments, planetary1_latitude_1_multipliers,
planetary1_latitude_1_coefficients, TOTAL_PLANETARY1_LATITUDE_1_TERMS) * t;
sp.distance += compute_serie_c(planetary_arguments, delaunay_arguments, planetary1_distance_1_multipliers,
planetary1_distance_1_coefficients, TOTAL_PLANETARY1_DISTANCE_1_TERMS) * t;
// computing planetary 2 perturbations (constant)
sp.longitude += compute_serie_d(planetary_arguments, delaunay_arguments, planetary2_longitude_0_multipliers,
planetary2_longitude_0_coefficients, TOTAL_PLANETARY2_LONGITUDE_0_TERMS);
sp.latitude += compute_serie_d(planetary_arguments, delaunay_arguments, planetary2_latitude_0_multipliers,
planetary2_latitude_0_coefficients, TOTAL_PLANETARY2_LATITUDE_0_TERMS);
sp.distance += compute_serie_d(planetary_arguments, delaunay_arguments, planetary2_distance_0_multipliers,
planetary2_distance_0_coefficients, TOTAL_PLANETARY2_DISTANCE_0_TERMS);
// computing planetary 2 perturbations (linear)
sp.longitude += compute_serie_d(planetary_arguments, delaunay_arguments, planetary2_longitude_1_multipliers,
planetary2_longitude_1_coefficients, TOTAL_PLANETARY2_LONGITUDE_1_TERMS) * t;
sp.latitude += compute_serie_d(planetary_arguments, delaunay_arguments, planetary2_latitude_1_multipliers,
planetary2_latitude_1_coefficients, TOTAL_PLANETARY2_LATITUDE_1_TERMS) * t;
sp.distance += compute_serie_d(planetary_arguments, delaunay_arguments, planetary2_distance_1_multipliers,
planetary2_distance_1_coefficients, TOTAL_PLANETARY2_DISTANCE_1_TERMS) * t;
// computing tidal effects (constant)
sp.longitude += compute_serie_b(zeta, delaunay_arguments, tidal_longitude_0_multipliers,
tidal_longitude_0_coefficients, TOTAL_TIDAL_LONGITUDE_0_TERMS);
sp.latitude += compute_serie_b(zeta, delaunay_arguments, tidal_latitude_0_multipliers,
tidal_latitude_0_coefficients, TOTAL_TIDAL_LATITUDE_0_TERMS);
sp.distance += compute_serie_b(zeta, delaunay_arguments, tidal_distance_0_multipliers,
tidal_distance_0_coefficients, TOTAL_TIDAL_DISTANCE_0_TERMS);
// computing tidal effects (linear)
sp.longitude += compute_serie_b(zeta, delaunay_arguments, tidal_longitude_1_multipliers,
tidal_longitude_1_coefficients, TOTAL_TIDAL_LONGITUDE_1_TERMS) * t;
sp.latitude += compute_serie_b(zeta, delaunay_arguments, tidal_latitude_1_multipliers,
tidal_latitude_1_coefficients, TOTAL_TIDAL_LATITUDE_1_TERMS) * t;
sp.distance += compute_serie_b(zeta, delaunay_arguments, tidal_distance_1_multipliers,
tidal_distance_1_coefficients, TOTAL_TIDAL_DISTANCE_1_TERMS) * t;
// computing Moon figure perturbations
sp.longitude += compute_serie_b(zeta, delaunay_arguments, moon_figure_longitude_multipliers,
moon_figure_longitude_coefficients, TOTAL_MOON_FIGURE_LONGITUDE_TERMS);
sp.latitude += compute_serie_b(zeta, delaunay_arguments, moon_figure_latitude_multipliers,
moon_figure_latitude_coefficients, TOTAL_MOON_FIGURE_LATITUDE_TERMS);
sp.distance += compute_serie_b(zeta, delaunay_arguments, moon_figure_distance_multipliers,
moon_figure_distance_coefficients, TOTAL_MOON_FIGURE_DISTANCE_TERMS);
// computing relativistic perturbations
sp.longitude += compute_serie_b(zeta, delaunay_arguments, relativistic_longitude_multipliers,
relativistic_longitude_coefficients, TOTAL_RELATIVISTIC_LONGITUDE_TERMS);
sp.latitude += compute_serie_b(zeta, delaunay_arguments, relativistic_latitude_multipliers,
relativistic_latitude_coefficients, TOTAL_RELATIVISTIC_LATITUDE_TERMS);
sp.distance += compute_serie_b(zeta, delaunay_arguments, relativistic_distance_multipliers,
relativistic_distance_coefficients, TOTAL_RELATIVISTIC_DISTANCE_TERMS);
// computing planetary perturbations (solar eccentricity) (quadratic)
sp.longitude += compute_serie_b(zeta, delaunay_arguments, planetary_longitude_2_multipliers,
planetary_longitude_2_coefficients, TOTAL_PLANETARY_LONGITUDE_2_TERMS) * t * t;
sp.latitude += compute_serie_b(zeta, delaunay_arguments, planetary_latitude_2_multipliers,
planetary_latitude_2_coefficients, TOTAL_PLANETARY_LATITUDE_2_TERMS) * t * t;
sp.distance += compute_serie_b(zeta, delaunay_arguments, planetary_distance_2_multipliers,
planetary_distance_2_coefficients, TOTAL_PLANETARY_DISTANCE_2_TERMS) * t * t;
// recomputing full ELP2000 arguments
compute_elp2000_arguments(t, FULL_SERIES_TOTAL_TERMS, elp2000_arguments);
// adding mean mean longitude of the Moon (W₁)
sp.longitude += elp2000_arguments[W1];
return sp;
}
spherical_point geocentric_moon_position_of_date(double t)
{
spherical_point sp; // geocentric Moon position referred to ELP reference frame
double p; // accumulated precession between J2000 and a given date
// calculating Moon's position referred to ELP reference frame
sp = geocentric_moon_position(t);
// computing accumulated precession between J2000 and a given date
p = 5029.0966 * t + 1.1120 * t * t + 0.000077 * t * t * t - 0.00002353 * t * t * t * t;
// adding accumulated precession to the longitude of Moon's position
sp.longitude += p;
return sp;
}
cartesian_3d_point geocentric_moon_position_cartesian(double t)
{
spherical_point sp; // a value in spherical coordinates
cartesian_3d_point rp; // resulting value in rectangular coordiantes (reference frame of ELP2000)
// computing Moon's position in spherical coordinates
sp = geocentric_moon_position(t);
// converting longitude and latitude from arcseconds to radians (π = 368000")
sp.longitude *= M_PI / 648000.0;
sp.latitude *= M_PI / 648000.0;
// converting to rectangular coordinates
rp.x = sp.distance * cos(sp.longitude) * cos(sp.latitude);
rp.y = sp.distance * sin(sp.longitude) * cos(sp.latitude);
rp.z = sp.distance * sin(sp.latitude);
return rp;
}
cartesian_3d_point geocentric_moon_position_cartesian_of_J2000(double t)
{
cartesian_3d_point rp; // position of the Moon in rectangular coordinates referred to the ELP2000 reference frame
cartesian_3d_point re2000p; // position of the Moon in rectangular coordinates referred to the internal mean ecliptic
// and equinox of J2000
double p, q; // intermediate auxiliary convertion variables from Laskar's series
// computing Moon's position in rectangular coordinates referred to the ELP2000 reference frame
rp = geocentric_moon_position_cartesian(t);
// computing p and q
p = 0.10180391e-4 * t + 0.47020439e-6 * t * t - 0.5417367e-9 * t * t * t -
0.2507948e-11 * t * t * t * t + 0.463486e-14 * t * t * t * t * t;
q = -0.113469002e-3 * t + 0.12372674e-6 * t * t + 0.12654170e-8 * t * t * t -
0.1371808e-11 * t * t * t * t - 0.320334e-14 * t * t * t * t * t;
// performing rotation of ELP2000 reference frame into mean dynamical ecliptic and equinox of J2000
re2000p.x = (1 - 2 * p * p) * rp.x + 2 * p * q * rp.y + 2 * p * sqrt(1 - p * p - q * q) * rp.z;
re2000p.y = 2 * p * q * rp.x + (1 - 2 * q * q) * rp.y - 2 * q * sqrt(1 - p * p - q * q) * rp.z;
re2000p.z = -2 * p * sqrt(1 - p * p - q * q) * rp.x + 2 * q * sqrt(1 - p * p - q * q) * rp.y + (1 - 2 * p * p - 2 * q * q) * rp.z;
return re2000p;
}
cartesian_3d_point geocentric_moon_position_cartesian_of_FK5(double t)
{
cartesian_3d_point re2000p; // position of the Moon in rectangular coordianted referred to the internal mean
// ecliptic and equinox of J2000
cartesian_3d_point rfk5p; // position of the Moon in rectangular coordinates referred to the FK5 equator ♈FK5
// (mean equator and rotational mean equinox of J2000)
// computing Moon's position in rectangular coordinates referred to the internal mean ecliptic and equinox of J2000
re2000p = geocentric_moon_position_cartesian_of_J2000(t);
// performing transformation to rectangular coordinates referred to the FK5 equator
rfk5p.x = 1.000000000000 * re2000p.x + 0.000000437913 * re2000p.y - 0.000000189859 * re2000p.z;
rfk5p.y = -0.000000477299 * re2000p.x + 0.917482137607 * re2000p.y - 0.397776981791 * re2000p.z;
rfk5p.z = 0.000000000000 * re2000p.x + 0.397776981701 * re2000p.y + 0.917482137607 * re2000p.z;
return rfk5p;
}