-
Notifications
You must be signed in to change notification settings - Fork 2
/
undeepvo_dataloader.py
133 lines (108 loc) · 6.81 KB
/
undeepvo_dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
"""Undeepvo data loader.
"""
from __future__ import absolute_import, division, print_function
import tensorflow as tf
def string_length_tf(t):
return tf.py_func(len, [t], [tf.int64])
class UndeepvoDataloader(object):
"""undeepvo dataloader"""
def __init__(self, data_path, filenames_file, params, dataset, mode):
self.data_path = data_path
self.params = params
self.dataset = dataset
self.mode = mode
self.left_image_batch = None
self.right_image_batch = None
self.left_next_image_batch = None
self.right_next_image_batch = None
self.cam_params_batch = None
input_queue = tf.train.string_input_producer([filenames_file], shuffle=False)
line_reader = tf.TextLineReader()
_, line = line_reader.read(input_queue)
split_line = tf.string_split([line]).values
# we load only one image for test, except if we trained a stereo model
if mode == 'test':
left_image_path = tf.string_join([self.data_path, split_line[0]])
left_image_o = self.read_image(left_image_path)
else:
left_image_path = tf.string_join([self.data_path, split_line[0]])
right_image_path = tf.string_join([self.data_path, split_line[1]])
left_next_image_path = tf.string_join([self.data_path, split_line[2]])
right_next_image_path = tf.string_join([self.data_path, split_line[3]])
cam_params = tf.string_to_number(split_line[4:11])
height_o = tf.string_to_number(split_line[11])
width_o = tf.string_to_number(split_line[12])
left_image_o = self.read_image(left_image_path)
right_image_o = self.read_image(right_image_path)
left_next_image_o = self.read_image(left_next_image_path)
right_next_image_o = self.read_image(right_next_image_path)
# set cam_params shape
cam_params = tf.reshape(cam_params, [7])
cam_params = tf.expand_dims(cam_params,0)
h_tensor = tf.expand_dims(tf.cast(tf.constant([self.params.height]), tf.float32),0)
w_tensor = tf.expand_dims(tf.cast(tf.constant([self.params.width]), tf.float32),0)
cam_params = tf.squeeze(tf.concat([cam_params, h_tensor/height_o, w_tensor/width_o],1))
# print(h_tensor/height_o)
if mode == 'train':
# randomly flip images
do_flip = tf.random_uniform([], 0, 1)
left_image = tf.cond(do_flip > 0.5, lambda: tf.image.flip_left_right(right_image_o), lambda: left_image_o)
right_image = tf.cond(do_flip > 0.5, lambda: tf.image.flip_left_right(left_image_o), lambda: right_image_o)
left_next_image = tf.cond(do_flip > 0.5, lambda: tf.image.flip_left_right(right_next_image_o), lambda: left_next_image_o)
right_next_image = tf.cond(do_flip > 0.5, lambda: tf.image.flip_left_right(left_next_image_o), lambda: right_next_image_o)
# randomly augment images
do_augment = tf.random_uniform([], 0, 1)
left_image, right_image, left_next_image, right_next_image = tf.cond(do_augment > 0.5, lambda: self.augment_image_pair(left_image, right_image, left_next_image, right_next_image), lambda: (left_image, right_image, left_next_image, right_next_image))
# set image shape
left_image.set_shape( [self.params.height, self.params.width, 3])
right_image.set_shape([self.params.height, self.params.width, 3])
left_next_image.set_shape( [self.params.height, self.params.width, 3])
right_next_image.set_shape([self.params.height, self.params.width, 3])
# capacity = min_after_dequeue + (num_threads + a small safety margin) * batch_size
min_after_dequeue = 2048
capacity = min_after_dequeue + 4 * params.batch_size
self.left_image_batch, self.right_image_batch, self.left_next_image_batch, self.right_next_image_batch, self.cam_params_batch = tf.train.shuffle_batch([left_image, right_image, left_next_image, right_next_image, cam_params], params.batch_size, capacity, min_after_dequeue, params.num_threads)
elif mode == 'test':
self.left_image_batch = tf.stack([left_image_o, tf.image.flip_left_right(left_image_o)], 0)
self.left_image_batch.set_shape( [2, None, None, 3])
def augment_image_pair(self, left_image, right_image, left_next_image, right_next_image):
# randomly shift gamma
random_gamma = tf.random_uniform([], 0.8, 1.2)
left_image_aug = left_image ** random_gamma
right_image_aug = right_image ** random_gamma
left_next_image_aug = left_next_image ** random_gamma
right_next_image_aug = right_next_image ** random_gamma
# randomly shift brightness
random_brightness = tf.random_uniform([], 0.5, 2.0)
left_image_aug = left_image_aug * random_brightness
right_image_aug = right_image_aug * random_brightness
left_next_image_aug = left_next_image_aug * random_brightness
right_next_image_aug = right_next_image_aug * random_brightness
# randomly shift color
random_colors = tf.random_uniform([3], 0.8, 1.2)
white = tf.ones([tf.shape(left_image)[0], tf.shape(left_image)[1]])
color_image = tf.stack([white * random_colors[i] for i in range(3)], axis=2)
left_image_aug *= color_image
right_image_aug *= color_image
left_next_image_aug *= color_image
right_next_image_aug *= color_image
# saturate
left_image_aug = tf.clip_by_value(left_image_aug, 0, 1)
right_image_aug = tf.clip_by_value(right_image_aug, 0, 1)
left_next_image_aug = tf.clip_by_value(left_next_image_aug, 0, 1)
right_next_image_aug = tf.clip_by_value(right_next_image_aug, 0, 1)
return left_image_aug, right_image_aug, left_next_image_aug, right_next_image_aug
def read_image(self, image_path):
# tf.decode_image does not return the image size, this is an ugly workaround to handle both jpeg and png
path_length = string_length_tf(image_path)[0]
file_extension = tf.substr(image_path, path_length - 3, 3)
file_cond = tf.equal(file_extension, 'jpg')
image = tf.cond(file_cond, lambda: tf.image.decode_jpeg(tf.read_file(image_path)), lambda: tf.image.decode_png(tf.read_file(image_path)))
# if the dataset is cityscapes, we crop the last fifth to remove the car hood
if self.dataset == 'cityscapes':
o_height = tf.shape(image)[0]
crop_height = (o_height * 4) // 5
image = image[:crop_height,:,:]
image = tf.image.convert_image_dtype(image, tf.float32)
image = tf.image.resize_images(image, [self.params.height, self.params.width], tf.image.ResizeMethod.AREA)
return image