-
-
Notifications
You must be signed in to change notification settings - Fork 282
/
core.py
504 lines (389 loc) · 14.9 KB
/
core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
from __future__ import annotations
import sys
from abc import ABC, abstractmethod
from typing import (
TYPE_CHECKING,
Any,
Literal,
NamedTuple,
Protocol,
SupportsIndex,
cast,
runtime_checkable,
)
import numpy as np
import numpy.typing as npt
from zarr.registry import (
get_buffer_class,
get_ndbuffer_class,
)
if TYPE_CHECKING:
from collections.abc import Iterable, Sequence
from typing import Self
from zarr.codecs.bytes import Endian
from zarr.core.common import BytesLike, ChunkCoords
# Everything here is imported into ``zarr.core.buffer`` namespace.
__all__: list[str] = []
@runtime_checkable
class ArrayLike(Protocol):
"""Protocol for the array-like type that underlie Buffer"""
@property
def dtype(self) -> np.dtype[Any]: ...
@property
def ndim(self) -> int: ...
@property
def size(self) -> int: ...
def __getitem__(self, key: slice) -> Self: ...
def __setitem__(self, key: slice, value: Any) -> None: ...
@runtime_checkable
class NDArrayLike(Protocol):
"""Protocol for the nd-array-like type that underlie NDBuffer"""
@property
def dtype(self) -> np.dtype[Any]: ...
@property
def ndim(self) -> int: ...
@property
def size(self) -> int: ...
@property
def shape(self) -> ChunkCoords: ...
def __len__(self) -> int: ...
def __getitem__(self, key: slice) -> Self: ...
def __setitem__(self, key: slice, value: Any) -> None: ...
def __array__(self) -> npt.NDArray[Any]: ...
def reshape(
self, shape: ChunkCoords | Literal[-1], *, order: Literal["A", "C", "F"] = ...
) -> Self: ...
def view(self, dtype: npt.DTypeLike) -> Self: ...
def astype(self, dtype: npt.DTypeLike, order: Literal["K", "A", "C", "F"] = ...) -> Self: ...
def fill(self, value: Any) -> None: ...
def copy(self) -> Self: ...
def transpose(self, axes: SupportsIndex | Sequence[SupportsIndex] | None) -> Self: ...
def ravel(self, order: Literal["K", "A", "C", "F"] = ...) -> Self: ...
def all(self) -> bool: ...
def __eq__(self, other: object) -> Self: # type: ignore[explicit-override, override]
"""Element-wise equal
Notes
-----
Type checkers such as mypy complains because the return type isn't a bool like
its supertype "object", which violates the Liskov substitution principle.
This is true, but since NumPy's ndarray is defined as an element-wise equal,
our hands are tied.
"""
def check_item_key_is_1d_contiguous(key: Any) -> None:
"""Raises error if `key` isn't a 1d contiguous slice"""
if not isinstance(key, slice):
raise TypeError(
f"Item key has incorrect type (expected slice, got {key.__class__.__name__})"
)
if not (key.step is None or key.step == 1):
raise ValueError("slice must be contiguous")
class Buffer(ABC):
"""A flat contiguous memory block
We use Buffer throughout Zarr to represent a contiguous block of memory.
A Buffer is backed by a underlying array-like instance that represents
the memory. The memory type is unspecified; can be regular host memory,
CUDA device memory, or something else. The only requirement is that the
array-like instance can be copied/converted to a regular Numpy array
(host memory).
Notes
-----
This buffer is untyped, so all indexing and sizes are in bytes.
Parameters
----------
array_like
array-like object that must be 1-dim, contiguous, and byte dtype.
"""
def __init__(self, array_like: ArrayLike) -> None:
if array_like.ndim != 1:
raise ValueError("array_like: only 1-dim allowed")
if array_like.dtype != np.dtype("b"):
raise ValueError("array_like: only byte dtype allowed")
self._data = array_like
@classmethod
@abstractmethod
def create_zero_length(cls) -> Self:
"""Create an empty buffer with length zero
Returns
-------
New empty 0-length buffer
"""
if cls is Buffer:
raise NotImplementedError("Cannot call abstract method on the abstract class 'Buffer'")
return cls(
cast(ArrayLike, None)
) # This line will never be reached, but it satisfies the type checker
@classmethod
def from_array_like(cls, array_like: ArrayLike) -> Self:
"""Create a new buffer of an array-like object
Parameters
----------
array_like
array-like object that must be 1-dim, contiguous, and byte dtype.
Returns
-------
New buffer representing `array_like`
"""
return cls(array_like)
@classmethod
@abstractmethod
def from_buffer(cls, buffer: Buffer) -> Self:
"""Create a new buffer of an existing Buffer
This is useful if you want to ensure that an existing buffer is
of the correct subclass of Buffer. E.g., MemoryStore uses this
to return a buffer instance of the subclass specified by its
BufferPrototype argument.
Typically, this only copies data if the data has to be moved between
memory types, such as from host to device memory.
Parameters
----------
buffer
buffer object.
Returns
-------
A new buffer representing the content of the input buffer
Notes
-----
Subclasses of `Buffer` must override this method to implement
more optimal conversions that avoid copies where possible
"""
if cls is Buffer:
raise NotImplementedError("Cannot call abstract method on the abstract class 'Buffer'")
return cls(
cast(ArrayLike, None)
) # This line will never be reached, but it satisfies the type checker
@classmethod
@abstractmethod
def from_bytes(cls, bytes_like: BytesLike) -> Self:
"""Create a new buffer of a bytes-like object (host memory)
Parameters
----------
bytes_like
bytes-like object
Returns
-------
New buffer representing `bytes_like`
"""
if cls is Buffer:
raise NotImplementedError("Cannot call abstract method on the abstract class 'Buffer'")
return cls(
cast(ArrayLike, None)
) # This line will never be reached, but it satisfies the type checker
def as_array_like(self) -> ArrayLike:
"""Returns the underlying array (host or device memory) of this buffer
This will never copy data.
Returns
-------
The underlying 1d array such as a NumPy or CuPy array.
"""
return self._data
@abstractmethod
def as_numpy_array(self) -> npt.NDArray[Any]:
"""Returns the buffer as a NumPy array (host memory).
Notes
-----
Might have to copy data, consider using `.as_array_like()` instead.
Returns
-------
NumPy array of this buffer (might be a data copy)
"""
...
def to_bytes(self) -> bytes:
"""Returns the buffer as `bytes` (host memory).
Warnings
--------
Will always copy data, only use this method for small buffers such as metadata
buffers. If possible, use `.as_numpy_array()` or `.as_array_like()` instead.
Returns
-------
`bytes` of this buffer (data copy)
"""
return bytes(self.as_numpy_array())
def __getitem__(self, key: slice) -> Self:
check_item_key_is_1d_contiguous(key)
return self.__class__(self._data.__getitem__(key))
def __setitem__(self, key: slice, value: Any) -> None:
check_item_key_is_1d_contiguous(key)
self._data.__setitem__(key, value)
def __len__(self) -> int:
return self._data.size
@abstractmethod
def __add__(self, other: Buffer) -> Self:
"""Concatenate two buffers"""
...
def __eq__(self, other: object) -> bool:
# Another Buffer class can override this to choose a more efficient path
return isinstance(other, Buffer) and np.array_equal(
self.as_numpy_array(), other.as_numpy_array()
)
class NDBuffer:
"""An n-dimensional memory block
We use NDBuffer throughout Zarr to represent a n-dimensional memory block.
A NDBuffer is backed by a underlying ndarray-like instance that represents
the memory. The memory type is unspecified; can be regular host memory,
CUDA device memory, or something else. The only requirement is that the
ndarray-like instance can be copied/converted to a regular Numpy array
(host memory).
Notes
-----
The two buffer classes Buffer and NDBuffer are very similar. In fact, Buffer
is a special case of NDBuffer where dim=1, stride=1, and dtype="b". However,
in order to use Python's type system to differentiate between the contiguous
Buffer and the n-dim (non-contiguous) NDBuffer, we keep the definition of the
two classes separate.
Parameters
----------
ndarray_like
ndarray-like object that is convertible to a regular Numpy array.
"""
def __init__(self, array: NDArrayLike) -> None:
self._data = array
@classmethod
@abstractmethod
def create(
cls,
*,
shape: Iterable[int],
dtype: npt.DTypeLike,
order: Literal["C", "F"] = "C",
fill_value: Any | None = None,
) -> Self:
"""Create a new buffer and its underlying ndarray-like object
Parameters
----------
shape
The shape of the buffer and its underlying ndarray-like object
dtype
The datatype of the buffer and its underlying ndarray-like object
order
Whether to store multi-dimensional data in row-major (C-style) or
column-major (Fortran-style) order in memory.
fill_value
If not None, fill the new buffer with a scalar value.
Returns
-------
New buffer representing a new ndarray_like object
Notes
-----
A subclass can overwrite this method to create a ndarray-like object
other then the default Numpy array.
"""
if cls is NDBuffer:
raise NotImplementedError(
"Cannot call abstract method on the abstract class 'NDBuffer'"
)
return cls(
cast(NDArrayLike, None)
) # This line will never be reached, but it satisfies the type checker
@classmethod
def from_ndarray_like(cls, ndarray_like: NDArrayLike) -> Self:
"""Create a new buffer of a ndarray-like object
Parameters
----------
ndarray_like
ndarray-like object
Returns
-------
New buffer representing `ndarray_like`
"""
return cls(ndarray_like)
@classmethod
@abstractmethod
def from_numpy_array(cls, array_like: npt.ArrayLike) -> Self:
"""Create a new buffer of Numpy array-like object
Parameters
----------
array_like
Object that can be coerced into a Numpy array
Returns
-------
New buffer representing `array_like`
"""
if cls is NDBuffer:
raise NotImplementedError(
"Cannot call abstract method on the abstract class 'NDBuffer'"
)
return cls(
cast(NDArrayLike, None)
) # This line will never be reached, but it satisfies the type checker
def as_ndarray_like(self) -> NDArrayLike:
"""Returns the underlying array (host or device memory) of this buffer
This will never copy data.
Returns
-------
The underlying array such as a NumPy or CuPy array.
"""
return self._data
@abstractmethod
def as_numpy_array(self) -> npt.NDArray[Any]:
"""Returns the buffer as a NumPy array (host memory).
Warnings
--------
Might have to copy data, consider using `.as_ndarray_like()` instead.
Returns
-------
NumPy array of this buffer (might be a data copy)
"""
...
@property
def dtype(self) -> np.dtype[Any]:
return self._data.dtype
@property
def shape(self) -> tuple[int, ...]:
return self._data.shape
@property
def byteorder(self) -> Endian:
from zarr.codecs.bytes import Endian
if self.dtype.byteorder == "<":
return Endian.little
elif self.dtype.byteorder == ">":
return Endian.big
else:
return Endian(sys.byteorder)
def reshape(self, newshape: ChunkCoords | Literal[-1]) -> Self:
return self.__class__(self._data.reshape(newshape))
def squeeze(self, axis: tuple[int, ...]) -> Self:
newshape = tuple(a for i, a in enumerate(self.shape) if i not in axis)
return self.__class__(self._data.reshape(newshape))
def astype(self, dtype: npt.DTypeLike, order: Literal["K", "A", "C", "F"] = "K") -> Self:
return self.__class__(self._data.astype(dtype=dtype, order=order))
@abstractmethod
def __getitem__(self, key: Any) -> Self: ...
@abstractmethod
def __setitem__(self, key: Any, value: Any) -> None: ...
def __len__(self) -> int:
return self._data.__len__()
def __repr__(self) -> str:
return f"<NDBuffer shape={self.shape} dtype={self.dtype} {self._data!r}>"
def all_equal(self, other: Any, equal_nan: bool = True) -> bool:
"""Compare to `other` using np.array_equal."""
if other is None:
# Handle None fill_value for Zarr V2
return False
# use array_equal to obtain equal_nan=True functionality
# Since fill-value is a scalar, isn't there a faster path than allocating a new array for fill value
# every single time we have to write data?
_data, other = np.broadcast_arrays(self._data, other)
return np.array_equal(
self._data, other, equal_nan=equal_nan if self._data.dtype.kind not in "USTO" else False
)
def fill(self, value: Any) -> None:
self._data.fill(value)
def copy(self) -> Self:
return self.__class__(self._data.copy())
def transpose(self, axes: SupportsIndex | Sequence[SupportsIndex] | None) -> Self:
return self.__class__(self._data.transpose(axes))
class BufferPrototype(NamedTuple):
"""Prototype of the Buffer and NDBuffer class
The protocol must be pickable.
Attributes
----------
buffer
The Buffer class to use when Zarr needs to create new Buffer.
nd_buffer
The NDBuffer class to use when Zarr needs to create new NDBuffer.
"""
buffer: type[Buffer]
nd_buffer: type[NDBuffer]
# The default buffer prototype used throughout the Zarr codebase.
def default_buffer_prototype() -> BufferPrototype:
return BufferPrototype(buffer=get_buffer_class(), nd_buffer=get_ndbuffer_class())