forked from nbei/Deep-Flow-Guided-Video-Inpainting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_initial.py
200 lines (160 loc) · 7.65 KB
/
train_initial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import sys, os
sys.path.append(os.path.abspath(os.path.join(__file__, '..', '..')))
import argparse
import yaml
import torch
import cvbase as cvb
import numpy as np
import cv2
import torch.optim as optim
from torch import nn
import torch.nn.functional as F
from tensorboardX import SummaryWriter
from torch.utils import data
from torchvision.utils import save_image, make_grid
from tqdm import tqdm
from torch.utils.data import DataLoader
import utils.loss_func as L
from dataset.FlowInitial import FlowSeq
from models import resnet_models
from utils.io import save_ckpt, load_ckpt
from utils.runner_func import *
parser = argparse.ArgumentParser()
# training options
parser.add_argument('--save_dir', type=str, default='./snapshots/default')
parser.add_argument('--log_dir', type=str, default='./logs/default')
parser.add_argument('--model_name', type=str, default=None)
parser.add_argument('--max_iter', type=int, default=100000)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--n_threads', type=int, default=32)
parser.add_argument('--resume', action='store_true')
parser.add_argument('--get_mask', action='store_true')
parser.add_argument('--LR', type=float, default=1e-4)
parser.add_argument('--LAMBDA_SMOOTH', type=float, default=0.1)
parser.add_argument('--LAMBDA_HARD', type=float, default=2.)
parser.add_argument('--BETA1', type=float, default=0.9)
parser.add_argument('--BETA2', type=float, default=0.999)
parser.add_argument('--WEIGHT_DECAY', type=float, default=0.00004)
parser.add_argument('--IMAGE_SHAPE', type=list, default=[240, 424, 3])
parser.add_argument('--RES_SHAPE', type=list, default=[240, 424, 3])
parser.add_argument('--FIX_MASK', action='store_true')
parser.add_argument('--MASK_MODE', type=str, default=None)
parser.add_argument('--PRETRAINED', action='store_true')
parser.add_argument('--PRETRAINED_MODEL', type=str, default=None)
parser.add_argument('--RESNET_PRETRAIN_MODEL', type=str,
default='pretrained_models/models/resnet50-19c8e357.pth')
parser.add_argument('--TRAIN_LIST', type=str, default=None)
parser.add_argument('--EVAL_LIST', type=str, default=None)
parser.add_argument('--MASK_ROOT', type=str, default=None)
parser.add_argument('--DATA_ROOT', type=str, default=None,
help='Set the path to flow dataset')
parser.add_argument('--INITIAL_HOLE', action='store_true')
parser.add_argument('--TRAIN_LIST_MASK', type=str, default=None)
parser.add_argument('--PRINT_EVERY', type=int, default=5)
parser.add_argument('--MODEL_SAVE_STEP', type=int, default=5000)
parser.add_argument('--NUM_ITERS_DECAY', type=int, default=10000)
parser.add_argument('--CPU', action='store_true')
parser.add_argument('--MASK_HEIGHT', type=int, default=120)
parser.add_argument('--MASK_WIDTH', type=int, default=212)
parser.add_argument('--VERTICAL_MARGIN', type=int, default=10)
parser.add_argument('--HORIZONTAL_MARGIN', type=int, default=10)
parser.add_argument('--MAX_DELTA_HEIGHT', type=int, default=60)
parser.add_argument('--MAX_DELTA_WIDTH', type=int, default=106)
args = parser.parse_args()
def main():
image_size = [args.IMAGE_SHAPE[0], args.IMAGE_SHAPE[1]]
if args.model_name is not None:
model_save_dir = './snapshots/'+args.model_name+'/ckpt/'
sample_dir = './snapshots/'+args.model_name+'/images/'
log_dir = './logs/'+args.model_name
else:
model_save_dir = os.path.join(args.save_dir, 'ckpt')
sample_dir = os.path.join(args.save_dir, 'images')
log_dir = args.log_dir
if not os.path.exists(model_save_dir):
os.makedirs(model_save_dir)
if not os.path.exists(sample_dir):
os.makedirs(sample_dir)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
with open(os.path.join(log_dir, 'config.yml'), 'w') as f:
yaml.dump(vars(args), f)
writer = SummaryWriter(log_dir=log_dir)
torch.manual_seed(7777777)
if not args.CPU:
torch.cuda.manual_seed(7777777)
flow_resnet = resnet_models.Flow_Branch_Multi(input_chanels=33, NoLabels=2)
saved_state_dict = torch.load(args.RESNET_PRETRAIN_MODEL)
for i in saved_state_dict:
if 'conv1.' in i[:7]:
conv1_weight = saved_state_dict[i]
conv1_weight_mean = torch.mean(conv1_weight, dim=1, keepdim=True)
conv1_weight_new = (conv1_weight_mean / 33.0).repeat(1, 33, 1, 1)
saved_state_dict[i] = conv1_weight_new
flow_resnet.load_state_dict(saved_state_dict, strict=False)
flow_resnet = nn.DataParallel(flow_resnet).cuda()
flow_resnet.train()
optimizer = optim.SGD([{'params': get_1x_lr_params(flow_resnet.module), 'lr': args.LR},
{'params': get_10x_lr_params(flow_resnet.module), 'lr': 10 * args.LR}],
lr=args.LR, momentum=0.9, weight_decay=args.WEIGHT_DECAY)
train_dataset = FlowSeq(args)
train_loader = DataLoader(train_dataset,
batch_size=args.batch_size,
shuffle=True,
drop_last=True,
num_workers=args.n_threads)
if args.resume:
if args.PRETRAINED_MODEL is not None:
resume_iter = load_ckpt(args.PRETRAINED_MODEL,
[('model', flow_resnet)],
[('optimizer', optimizer)])
print('Model Resume from', resume_iter, 'iter')
else:
print('Cannot load Pretrained Model')
return
if args.PRETRAINED:
if args.PRETRAINED_MODEL is not None:
resume_iter = load_ckpt(args.PRETRAINED_MODEL,
[('model', flow_resnet)],
strict=True)
print('Model Resume from', resume_iter, 'iter')
train_iterator = iter(train_loader)
loss = {}
start_iter = 0 if not args.resume else resume_iter
for i in tqdm(range(start_iter, args.max_iter)):
# st = time.time()
try:
flow_mask_cat, flow_masked, gt_flow, mask = next(train_iterator)
except:
print('Loader Restart')
train_iterator = iter(train_loader)
flow_mask_cat, flow_masked, gt_flow, mask = next(train_iterator)
# print(time.time()-st)
input_x = flow_mask_cat.cuda()
gt_flow = gt_flow.cuda()
mask = mask.cuda()
flow_masked = flow_masked.cuda()
flow1x = flow_resnet(input_x)
fake_flow = flow1x * mask[:,10:12,:,:] + flow_masked[:,10:12,:,:] * (1. - mask[:,10:12,:,:])
loss['1x_recon'] = L.L1_mask(flow1x[:,:,:,:], gt_flow[:,10:12,:,:], mask[:,10:12,:,:])
loss['1x_recon_hard'], new_mask = L.L1_mask_hard_mining(flow1x, gt_flow[:,10:12,:,:], mask[:,10:11,:,:])
loss_total = loss['1x_recon'] + args.LAMBDA_HARD * loss['1x_recon_hard']
if i % args.NUM_ITERS_DECAY == 0:
adjust_learning_rate(optimizer, i, [30000, 50000])
print('LR has been changed')
optimizer.zero_grad()
loss_total.backward()
optimizer.step()
if i % args.PRINT_EVERY == 0:
print('=========================================================')
print(args.model_name, "Rank[{}] Iter [{}/{}]".format(0, i + 1, args.max_iter))
print('=========================================================')
print_loss_dict(loss)
write_loss_dict(loss, writer, i)
if (i+1) % args.MODEL_SAVE_STEP == 0:
save_ckpt(os.path.join(model_save_dir, 'DFI_%d.pth' % i),
[('model', flow_resnet)], [('optimizer', optimizer)], i)
print('Model has been saved at %d Iters' % i)
writer.close()
if __name__ == '__main__':
main()