-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain_cifar.py
540 lines (471 loc) · 23.4 KB
/
train_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
from __future__ import print_function
import nd_aggregation
import mxnet as mx
from mxnet import nd, autograd, gluon
from mxnet.gluon.model_zoo import vision as models
import numpy as np
import random
import argparse
import byzantine
import sys
import os
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
import scipy
from collections import namedtuple
os.environ["MXNET_CUDNN_AUTOTUNE_DEFAULT"] = "0"
np.warnings.filterwarnings('ignore')
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", help="dataset", default='cifar10', type=str)
parser.add_argument("--bias", help="degree of non-IID to assign data to workers", type=float, default=0.1)
parser.add_argument("--net", help="net", default='resnet', type=str, choices=['mlr', 'cnn', 'fcnn', 'resnet'])
parser.add_argument("--batch_size", help="batch size", default=32, type=int)
parser.add_argument("--lr", help="learning rate", default=0.001, type=float)
parser.add_argument("--nworkers", help="# workers", default=100, type=int)
parser.add_argument("--nepochs", help="# epochs", default=2000, type=int)
parser.add_argument("--gpu", help="index of gpu", default=0, type=int)
parser.add_argument("--seed", help="seed", default=42, type=int)
parser.add_argument("--nbyz", help="# byzantines", default=28, type=int)
parser.add_argument("--byz_type", help="type of attack", default='scaling_attack', type=str,
choices=['no', 'partial_trim', 'full_trim', 'mean_attack', 'full_mean_attack', 'gaussian',
'dir_partial_krum_lambda', 'dir_full_krum_lambda', 'label_flip', 'backdoor', 'dba',
'edge', 'scaling_attack'])
parser.add_argument("--aggregation", help="aggregation rule", default='median', type=str,
choices=['simple_mean', 'trim', 'krum', 'median'])
return parser.parse_args()
class VAE(gluon.HybridBlock):
def __init__(self, ctx):
super(VAE, self).__init__()
self.ctx = ctx
with self.name_scope():
self.fc1 = gluon.nn.Dense(500)
self.fc21 = gluon.nn.Dense(20)
self.fc22 = gluon.nn.Dense(20)
self.fc3 = gluon.nn.Dense(500)
self.fc4 = gluon.nn.Dense(640)
def encode(self, x):
h1 = nd.Activation(self.fc1(x), 'relu')
return self.fc21(h1), nd.Activation(self.fc22(h1), 'softrelu')
def reparametrize(self, mu, logvar):
'''
mu is a number and logvar is a ndarray
'''
std = nd.exp(0.5 * logvar)
eps = nd.random_normal(
loc=0, scale=1, shape=std.shape).as_in_context(self.ctx)
return mu + eps * std
def decode(self, z):
h3 = nd.Activation(self.fc3(z), 'relu')
return nd.Activation(self.fc4(h3), 'sigmoid')
def forward(self, x):
mu, logvar = self.encode(x)
z = self.reparametrize(mu, logvar)
return self.decode(z), mu, logvar
def lbfgs(args, S_k_list, Y_k_list, v):
curr_S_k = nd.concat(*S_k_list, dim=1)
curr_Y_k = nd.concat(*Y_k_list, dim=1)
S_k_time_Y_k = nd.dot(curr_S_k.T, curr_Y_k)
S_k_time_S_k = nd.dot(curr_S_k.T, curr_S_k)
R_k = np.triu(S_k_time_Y_k.asnumpy())
L_k = S_k_time_Y_k - nd.array(R_k, ctx=mx.gpu(args.gpu))
sigma_k = nd.dot(Y_k_list[-1].T, S_k_list[-1]) / (nd.dot(S_k_list[-1].T, S_k_list[-1]))
D_k_diag = nd.diag(S_k_time_Y_k)
upper_mat = nd.concat(*[sigma_k * S_k_time_S_k, L_k], dim=1)
lower_mat = nd.concat(*[L_k.T, -nd.diag(D_k_diag)], dim=1)
mat = nd.concat(*[upper_mat, lower_mat], dim=0)
mat_inv = nd.linalg.inverse(mat)
approx_prod = sigma_k * v
p_mat = nd.concat(*[nd.dot(curr_S_k.T, sigma_k * v), nd.dot(curr_Y_k.T, v)], dim=0)
approx_prod -= nd.dot(nd.dot(nd.concat(*[sigma_k * curr_S_k, curr_Y_k], dim=1), mat_inv), p_mat)
return approx_prod
def params_convert(net):
tmp = []
for param in net.collect_params().values():
if param.grad_req == 'null':
continue
tmp.append(param.data().copy())
params = nd.concat(*[x.reshape((-1, 1)) for x in tmp], dim=0)
return params
def clip(a, b, c):
tmp = nd.minimum(nd.maximum(a, b), c)
return tmp
def detection(score, nobyz):
estimator = KMeans(n_clusters=2)
estimator.fit(score.reshape(-1, 1))
label_pred = estimator.labels_
if np.mean(score[label_pred==0])<np.mean(score[label_pred==1]):
#0 is the label of malicious clients
label_pred = 1 - label_pred
real_label=np.ones(100)
real_label[:nobyz]=0
acc=len(label_pred[label_pred==real_label])/100
recall=1-np.sum(label_pred[:nobyz])/nobyz
fpr=1-np.sum(label_pred[nobyz:])/(100-nobyz)
fnr=np.sum(label_pred[:nobyz])/nobyz
print("acc %0.4f; recall %0.4f; fpr %0.4f; fnr %0.4f;" % (acc, recall, fpr, fnr))
print(silhouette_score(score.reshape(-1, 1), label_pred))
def detection1(score, nobyz):
nrefs = 10
ks = range(1, 8)
gaps = np.zeros(len(ks))
gapDiff = np.zeros(len(ks) - 1)
sdk = np.zeros(len(ks))
min = np.min(score)
max = np.max(score)
score = (score - min)/(max-min)
for i, k in enumerate(ks):
estimator = KMeans(n_clusters=k)
estimator.fit(score.reshape(-1, 1))
label_pred = estimator.labels_
center = estimator.cluster_centers_
Wk = np.sum([np.square(score[m]-center[label_pred[m]]) for m in range(len(score))])
WkRef = np.zeros(nrefs)
for j in range(nrefs):
rand = np.random.uniform(0, 1, len(score))
estimator = KMeans(n_clusters=k)
estimator.fit(rand.reshape(-1, 1))
label_pred = estimator.labels_
center = estimator.cluster_centers_
WkRef[j] = np.sum([np.square(rand[m]-center[label_pred[m]]) for m in range(len(rand))])
gaps[i] = np.log(np.mean(WkRef)) - np.log(Wk)
sdk[i] = np.sqrt((1.0 + nrefs) / nrefs) * np.std(np.log(WkRef))
if i > 0:
gapDiff[i - 1] = gaps[i - 1] - gaps[i] + sdk[i]
#print(gapDiff)
for i in range(len(gapDiff)):
if gapDiff[i] >= 0:
select_k = i+1
break
if select_k == 1:
print('No attack detected!')
return 0
else:
print('Attack Detected!')
return 1
def main(args):
if args.gpu == -1:
ctx = mx.cpu()
else:
ctx = mx.gpu(args.gpu)
with ctx:
batch_size = args.batch_size
if args.dataset == 'cifar10':
num_inputs = 32 * 32 * 3
num_outputs = 10
else:
raise NotImplementedError
#################################################
# Multiclass Logistic Regression
MLR = gluon.nn.Sequential()
with MLR.name_scope():
MLR.add(gluon.nn.Dense(num_outputs))
#################################################
# two-layer fully connected nn
fcnn = gluon.nn.Sequential()
with fcnn.name_scope():
fcnn.add(gluon.nn.Dense(256, activation="relu"))
fcnn.add(gluon.nn.Dense(256, activation="relu"))
fcnn.add(gluon.nn.Dense(num_outputs))
#################################################
# CNN
cnn = gluon.nn.Sequential()
with cnn.name_scope():
cnn.add(gluon.nn.Conv2D(channels=30, kernel_size=5, activation='relu'))
cnn.add(gluon.nn.MaxPool2D(pool_size=2, strides=2))
cnn.add(gluon.nn.Conv2D(channels=50, kernel_size=5, activation='relu'))
cnn.add(gluon.nn.MaxPool2D(pool_size=2, strides=2))
# The Flatten layer collapses all axis, except the first one, into one axis.
cnn.add(gluon.nn.Flatten())
cnn.add(gluon.nn.Dense(512, activation="relu"))
cnn.add(gluon.nn.Dense(num_outputs))
########################################################################################################################
def evaluate_accuracy(data_iterator, net, trigger=False, target=None):
acc = mx.metric.Accuracy()
for i, (data, label) in enumerate(data_iterator):
data = data.as_in_context(ctx)
label = label.as_in_context(ctx)
remaining_idx = list(range(data.shape[0]))
if trigger:
for example_id in range(data.shape[0]):
data[example_id][0][1][28] = 1
data[example_id][1][1][28] = 1
data[example_id][2][1][28] = 1
data[example_id][0][1][29] = 1
data[example_id][1][1][29] = 1
data[example_id][2][1][29] = 1
data[example_id][0][1][30] = 1
data[example_id][1][1][30] = 1
data[example_id][2][1][30] = 1
data[example_id][0][2][29] = 1
data[example_id][1][2][29] = 1
data[example_id][2][2][29] = 1
data[example_id][0][3][28] = 1
data[example_id][1][3][28] = 1
data[example_id][2][3][28] = 1
data[example_id][0][4][29] = 1
data[example_id][1][4][29] = 1
data[example_id][2][4][29] = 1
data[example_id][0][5][28] = 1
data[example_id][1][5][28] = 1
data[example_id][2][5][28] = 1
data[example_id][0][5][29] = 1
data[example_id][1][5][29] = 1
data[example_id][2][5][29] = 1
data[example_id][0][5][30] = 1
data[example_id][1][5][30] = 1
data[example_id][2][5][30] = 1
for example_id in range(data.shape[0]):
if label[example_id] != target:
label[example_id] = target
else:
remaining_idx.remove(example_id)
output = net(data)
predictions = nd.argmax(output, axis=1)
predictions = predictions[remaining_idx]
label = label[remaining_idx]
acc.update(preds=predictions, labels=label)
return acc.get()[1]
########################################################################################################################
# decide attack type
if args.byz_type == 'partial_trim':
# partial knowledge trim attack
byz = byzantine.partial_trim
elif args.byz_type == 'full_trim':
# full knowledge trim attack
byz = byzantine.full_trim
elif args.byz_type == 'no':
byz = byzantine.no_byz
elif args.byz_type == 'gaussian':
byz = byzantine.gaussian_attack
elif args.byz_type == 'mean_attack':
byz = byzantine.mean_attack
elif args.byz_type == 'full_mean_attack':
byz = byzantine.full_mean_attack
elif args.byz_type == 'dir_partial_krum_lambda':
byz = byzantine.dir_partial_krum_lambda
elif args.byz_type == 'dir_full_krum_lambda':
byz = byzantine.dir_full_krum_lambda
elif args.byz_type == 'backdoor' or 'dba' or 'scaling_attack':
byz = byzantine.scaling_attack
elif args.byz_type == 'label_flip':
byz = byzantine.no_byz
else:
raise NotImplementedError
# decide model architecture
if args.net == 'cnn':
net = cnn
net.collect_params().initialize(mx.init.Xavier(magnitude=2.24), force_reinit=True, ctx=ctx)
elif args.net == 'fcnn':
net = fcnn
net.collect_params().initialize(mx.init.Xavier(magnitude=2.24), force_reinit=True, ctx=ctx)
elif args.net == 'mlr':
net = MLR
net.collect_params().initialize(mx.init.Xavier(magnitude=1.), force_reinit=True, ctx=ctx)
elif args.net == 'resnet':
kwargs = {'classes': 10, 'thumbnail': True}
res_layers = [3, 3, 3]
res_channels = [16, 16, 32, 64]
model = 'resnet20orig'
resnet_class = models.ResNetV1
block_class = models.BasicBlockV1
net = resnet_class(block_class, res_layers, res_channels, **kwargs)
net.initialize(mx.init.Xavier(magnitude=3.1415926), ctx=ctx)
else:
raise NotImplementedError
# define loss
softmax_cross_entropy = gluon.loss.SoftmaxCrossEntropyLoss()
# set upt parameters
num_workers = args.nworkers
lr = args.lr
epochs = args.nepochs
grad_list = []
old_grad_list = []
weight_record = []
grad_record = []
train_acc_list = []
# generate a string indicating the parameters
paraString = str(args.dataset) + "+bias " + str(args.bias) + "+net " + str(
args.net) + "+nepochs " + str(args.nepochs) + "+lr " + str(
args.lr) + "+batch_size " + str(args.batch_size) + "+nworkers " + str(
args.nworkers) + "+nbyz " + str(args.nbyz) + "+byz_type " + str(
args.byz_type) + "+aggregation " + str(args.aggregation) + ".txt"
# set up seed
seed = args.seed
mx.random.seed(seed)
random.seed(seed)
np.random.seed(seed)
# load dataset
if (args.dataset == 'cifar10' and args.net == 'cnn') or (args.dataset == 'cifar10' and args.net == 'resnet'):
def transform(data, label):
return nd.transpose(data.astype(np.float32), (2, 0, 1)) / 255., label.astype(np.float32)
train_data = mx.gluon.data.DataLoader(mx.gluon.data.vision.CIFAR10(train=True, transform=transform), 50000,
shuffle=True, last_batch='rollover')
test_data = mx.gluon.data.DataLoader(mx.gluon.data.vision.CIFAR10(train=False, transform=transform), 256,
shuffle=False, last_batch='rollover')
# biased assignment
bias_weight = args.bias
other_group_size = (1 - bias_weight) / 9.
worker_per_group = num_workers / 10
# assign non-IID training data to each worker
each_worker_data = [[] for _ in range(num_workers)]
each_worker_label = [[] for _ in range(num_workers)]
for _, (data, label) in enumerate(train_data):
for (x, y) in zip(data, label):
if args.dataset == 'cifar10':
x = x.as_in_context(ctx).reshape(1, 3, 32, 32)
elif args.dataset == 'mnist' and args.net == 'cnn':
x = x.as_in_context(ctx).reshape(1, 1, 28, 28)
else:
x = x.as_in_context(ctx).reshape(-1, num_inputs)
y = y.as_in_context(ctx)
# assign a data point to a group
upper_bound = (y.asnumpy()) * (1 - bias_weight) / 9. + bias_weight
lower_bound = (y.asnumpy()) * (1 - bias_weight) / 9.
rd = np.random.random_sample()
if rd > upper_bound:
worker_group = int(np.floor((rd - upper_bound) / other_group_size) + y.asnumpy() + 1)
elif rd < lower_bound:
worker_group = int(np.floor(rd / other_group_size))
else:
worker_group = y.asnumpy()
# assign a data point to a worker
rd = np.random.random_sample()
selected_worker = int(worker_group * worker_per_group + int(np.floor(rd * worker_per_group)))
each_worker_data[selected_worker].append(x)
each_worker_label[selected_worker].append(y)
# concatenate the data for each worker
each_worker_data = [nd.concat(*each_worker, dim=0) for each_worker in each_worker_data]
each_worker_label = [nd.concat(*each_worker, dim=0) for each_worker in each_worker_label]
# random shuffle the workers
random_order = np.random.RandomState(seed=seed).permutation(num_workers)
each_worker_data = [each_worker_data[i] for i in random_order]
each_worker_label = [each_worker_label[i] for i in random_order]
### begin training
print('start training!')
#set malicious scores
malicious_score = np.zeros((1, args.nworkers))
for e in range(epochs):
# for each worker
for i in range(100):
batch_x = each_worker_data[i][:]
batch_y = each_worker_label[i][:]
if args.byz_type == 'scaling_attack':
if i < args.nbyz:
for example_id in range(batch_x.shape[0] // 2):
# add the trigger to half of the images in the batch
# the trigger is the same as that used in "how to backdoor federated learning"
batch_x[example_id][0][1][28] = 1
batch_x[example_id][1][1][28] = 1
batch_x[example_id][2][1][28] = 1
batch_x[example_id][0][1][29] = 1
batch_x[example_id][1][1][29] = 1
batch_x[example_id][2][1][29] = 1
batch_x[example_id][0][1][30] = 1
batch_x[example_id][1][1][30] = 1
batch_x[example_id][2][1][30] = 1
batch_x[example_id][0][2][29] = 1
batch_x[example_id][1][2][29] = 1
batch_x[example_id][2][2][29] = 1
batch_x[example_id][0][3][28] = 1
batch_x[example_id][1][3][28] = 1
batch_x[example_id][2][3][28] = 1
batch_x[example_id][0][4][29] = 1
batch_x[example_id][1][4][29] = 1
batch_x[example_id][2][4][29] = 1
batch_x[example_id][0][5][28] = 1
batch_x[example_id][1][5][28] = 1
batch_x[example_id][2][5][28] = 1
batch_x[example_id][0][5][29] = 1
batch_x[example_id][1][5][29] = 1
batch_x[example_id][2][5][29] = 1
batch_x[example_id][0][5][30] = 1
batch_x[example_id][1][5][30] = 1
batch_x[example_id][2][5][30] = 1
batch_y[example_id] = 0
backdoor_target = 0
with autograd.record():
output = net(batch_x)
loss = softmax_cross_entropy(output, batch_y)
# backward
loss.backward()
grad_list.append([param.grad().copy() for param in net.collect_params().values() if param.grad_req != 'null'])
param_list = [nd.concat(*[xx.reshape((-1, 1)) for xx in x], dim=0) for x in grad_list]
tmp = []
for param in net.collect_params().values():
if param.grad_req != 'null':
tmp.append(param.data().copy())
weight = nd.concat(*[x.reshape((-1, 1)) for x in tmp], dim=0)
# use lbfgs to calculate hessian vector product
if e > 20:
hvp = lbfgs(args, weight_record, grad_record, weight - last_weight)
else:
hvp = None
# perform attack
if e > 0:
param_list = byz(param_list, args.nbyz)
if args.net == 'resnet':
if e > 500:
lr = args.lr / 5.
elif e > 750:
lr = args.lr / 20.
else:
lr = args.lr
if args.aggregation == 'trim':
grad, distance = nd_aggregation.trim(old_grad_list, param_list, net, lr, args.nbyz, hvp)
elif args.aggregation == 'simple_mean':
grad, distance = nd_aggregation.simple_mean(old_grad_list, param_list, net, lr, args.nbyz, hvp)
elif args.aggregation == 'median':
grad, distance = nd_aggregation.median(old_grad_list, param_list, net, lr, args.nbyz, hvp)
elif args.aggregation == 'krum':
grad, distance = nd_aggregation.krum(old_grad_list, param_list, net, lr, args.nbyz, hvp)
else:
raise NotImplementedError
# Update malicious distance score
if distance is not None and e > 20:
malicious_score = np.row_stack((malicious_score, distance))
if malicious_score.shape[0] >= 11:
if detection1(np.sum(malicious_score[-10:], axis=0), args.nbyz):
print('Stop at iteration:', e)
detection(np.sum(malicious_score[-10:], axis=0), args.nbyz)
break
# update weight record and gradient record
if e > 0:
weight_record.append(weight - last_weight)
grad_record.append(grad - last_grad)
# free memory & reset the list
if len(weight_record) > 10:
del weight_record[0]
del grad_record[0]
last_weight = weight
last_grad = grad
old_grad_list = param_list
del grad_list
grad_list = []
# compute training accuracy every 10 iterations
if (e + 1) % 5 == 0:
if args.byz_type == 'scaling_attack' or 'no':
test_accuracy = evaluate_accuracy(test_data, net)
backdoor_acc = evaluate_accuracy(test_data, net, trigger=True, target=backdoor_target)
train_acc_list.append((test_accuracy, backdoor_acc))
print("Epoch %02d. Test_acc %0.4f. Backdoor_acc %0.4f." % (e, test_accuracy, backdoor_acc))
else:
test_accuracy = evaluate_accuracy(test_data, net)
train_acc_list.append(test_accuracy)
print("Epoch %02d. Test_acc %0.4f" % (e, test_accuracy))
# save the training accuracy every 100 iterations
if (e + 1) % 100 == 0:
if args.dataset == 'cifar10':
if not os.path.exists('out_cifar_resnet/'):
os.mkdir('out_cifar_resnet/')
np.savetxt('out_cifar_resnet/' + paraString, train_acc_list, fmt='%.4f')
else:
raise NotImplementedError
# compute the final testing accuracy
if (e + 1) == args.nepochs:
test_accuracy = evaluate_accuracy(test_data, net)
print("Epoch %02d. Test_acc %0.4f" % (e, test_accuracy))
detection(np.sum(malicious_score[-10:], axis=0), args.nbyz)
if __name__ == "__main__":
args = parse_args()
main(args)