-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
96 lines (82 loc) · 2.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import torch
import tomllib
import os
from torch.utils.data import DataLoader
from torch.optim import Adam
from torch.optim.lr_scheduler import StepLR
from model_managers.snunet_model_manager import SnuNetModelManager
from utils.misc_utils import AverageMeter
from utils.dataset import create_datasets
PATHS_CONFIG = "run_configs.toml"
def load_paths_config() -> dict:
with open(PATHS_CONFIG, "rb") as f:
paths_config = tomllib.load(f)
required_paths = ["xA_path", "xB_path", "y_path", "output_dir", "model_config_path"]
missing_paths = [path for path in required_paths if path not in paths_config]
if missing_paths:
raise ValueError(
f"Missing expected path config variables: {', '.join(missing_paths)}"
)
return paths_config
def main():
# Load configuration
path_configs = load_paths_config()
model_manager = SnuNetModelManager(
path_configs["model_config_path"], path_configs["output_dir"]
)
# Create datasets
train_dataset, test_dataset, val_dataset = create_datasets(
path_configs["xA_path"],
path_configs["xB_path"],
path_configs["y_path"],
test_split=0.15,
validation_split=0.15,
random_state=42,
)
# Create data loaders
train_loader = DataLoader(
train_dataset,
batch_size=model_manager.batch_size,
shuffle=True,
num_workers=4,
pin_memory=True,
)
val_loader = DataLoader(
val_dataset,
batch_size=model_manager.batch_size,
shuffle=False,
num_workers=4,
pin_memory=True,
)
test_loader = DataLoader(
test_dataset,
batch_size=model_manager.batch_size,
shuffle=False,
num_workers=4,
pin_memory=True,
)
# Define loss function, optimizer, and scheduler
criterion = torch.nn.CrossEntropyLoss()
optimizer = Adam(
model_manager.model.parameters(),
lr=model_manager.learning_rate,
weight_decay=model_manager.weight_decay,
)
scheduler = StepLR(optimizer, step_size=1, gamma=0.95)
# Train the model
losses = AverageMeter()
model_manager.train(
train_loader,
val_loader,
criterion,
optimizer,
scheduler,
model_manager.num_steps,
losses,
)
# Final evaluation
final_metrics = model_manager.evaluate(test_loader)
model_manager.log_metrics(final_metrics)
model_manager.logger.info("Training completed.")
if __name__ == "__main__":
main()