-
Notifications
You must be signed in to change notification settings - Fork 4
/
demo.py
328 lines (258 loc) · 13.6 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import os
os.environ["CUDA_VISIBLE_DEVICES"]="0"
import pytorch3d
import torch
import numpy as np
from Synthetic import synthesize_imgs, random_RT
from Loss import velocity_loss, clipped_mae, chamfer_3d
from torch.nn.functional import mse_loss as mse
from Render import render_mesh
from Model import MLP, PositionEncoding, ResNet, Sequential, ShapeNet, BRDFNet
from utils import manual_seed, rand_ico_sphere, save_models, load_models
from Meshes import Meshes
from tqdm import tqdm
import h5py
import trimesh
from Model import MLP, PositionEncoding, Sequential, ShapeNet, BRDFNet
from itertools import chain
from utils import dotty, sample_lights_from_equirectangular_image, save_images, random_dirs, P_matrix_to_rot_trans_vectors, pytorch_camera, compile_video
import cv2
import os
from diligent import diligent_eval_chamfer
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # see issue #152
@torch.no_grad()
def sample_mesh(shape_net, brdf_net, init_mesh=None, normal_net=None, **params):
params = dotty(params)
if init_mesh is None:
init_mesh = rand_ico_sphere(params['sampling.ico_sphere_level'], device=device)
s = init_mesh.verts_packed()
x_arr, v_arr, dv_ds_arr, d2v_d2s_arr = shape_net(s, 0)
theta_x = brdf_net(s)
x = x_arr[-1]
faces = init_mesh.faces_packed()
mesh = Meshes(verts=[x], faces=[faces], vert_textures=[theta_x])
return mesh
def clamp_vertex_grad(grad, thre):
ret = grad + 0
ret[torch.logical_not(torch.abs(ret) < thre)] = 0
return ret
def train(images, silhouettes, rotations, translations, shape_net, brdf_net, optimizer, n_iterations, light_dirs=None, call_back=None, init_mesh=None, camera_settings=None, camera_settings_silhoutte=None, **params):
device = params['device']
n_images = len(images)
params = dotty(params)
null_init = init_mesh is None
def closure():
#################################
## sample mesh from neural nets
nonlocal init_mesh
if null_init:
init_mesh = rand_ico_sphere(params['sampling.ico_sphere_level'], device=device)
s = init_mesh.verts_packed()
if (params['loss.lambda_velocity']==0) or (params['loss.alpha'] == 0) or params['training.compute_velocity_seperately']:
x_arr, v_arr, dv_ds_arr, d2v_d2s_arr = shape_net(s, 0)
else:
x_arr, v_arr, dv_ds_arr, d2v_d2s_arr = shape_net(s, 2)
x = x_arr[-1]
if params.get('training.vertex_grad_clip', None) is not None:
hook = x.register_hook(lambda grad: clamp_vertex_grad(grad, params['training.vertex_grad_clip']))
theta_x = brdf_net(s)
faces = init_mesh.faces_packed()
mesh = Meshes(verts=[x], faces=[faces], vert_textures=[theta_x])
#################################
## render images with mesh
## and compute losses
batch_idx = torch.randperm(n_images)[:params['training.n_image_per_batch']]
loss_image, loss_silhouette, loss_velocity = 0, 0, 0
for i in batch_idx:
gt_image, gt_silhouette = images[i:i+1], silhouettes[i:i+1]
light_pose = None
if light_dirs is not None:
light_pose = light_dirs[i:i+1]
if params['loss.lambda_image'] != 0:
prd_image = render_mesh(mesh,
modes='image_ct', #######
rotations=rotations[i:i+1],
translations=translations[i:i+1],
image_size=params['rendering.rgb.image_size'],
blur_radius=params['rendering.rgb.blur_radius'],
faces_per_pixel=params['rendering.rgb.faces_per_pixel'],
device=device, background_colors=None, light_poses=light_pose, materials=None, camera_settings=camera_settings,
sigma=params['rendering.rgb.sigma'], gamma=params['rendering.rgb.gamma'])
max_intensity = params['rendering.rgb.max_intensity'] #* (np.random.rand()+1)
loss_tmp = clipped_mae(gt_image.cuda().clamp_max(max_intensity), prd_image, max_intensity) / params['training.n_image_per_batch']
(loss_tmp * params['loss.lambda_image']).backward(retain_graph=True)
loss_image += loss_tmp.detach()
if params['loss.lambda_silhouette'] != 0:
prd_silhouette = render_mesh(mesh,
modes='silhouette',
rotations=rotations[i:i+1],
translations=translations[i:i+1],
image_size=params['rendering.silhouette.image_size'],
blur_radius=params['rendering.silhouette.blur_radius'],
faces_per_pixel=params['rendering.silhouette.faces_per_pixel'],
device=device, background_colors=None, light_poses=None, materials=None, camera_settings=camera_settings_silhoutte,
sigma=params['rendering.silhouette.sigma'], gamma=params['rendering.silhouette.gamma'])
loss_tmp = mse(gt_silhouette.cuda(), prd_silhouette[...,0]) / params['training.n_image_per_batch']
(loss_tmp * params['loss.lambda_silhouette']).backward(retain_graph=True)
loss_silhouette += loss_tmp.detach()
if params['loss.lambda_velocity'] == 0:
pass
elif (params['loss.alpha'] == 0) or (not params['training.compute_velocity_seperately']):
loss_tmp = velocity_loss(v_arr, d2v_d2s_arr, params['loss.alpha'])
(loss_tmp * params['loss.lambda_velocity']).backward(retain_graph=True)
loss_velocity = loss_tmp.detach()
else:
ico_sphere = rand_ico_sphere(params['training.sampling_lvl_for_vel_loss'], device=device)
if init_mesh is not None:
n_verts = ico_sphere.verts_packed().shape[0]
s = pytorch3d.ops.sample_points_from_meshes(init_mesh, n_verts).reshape(n_verts, 3)
else:
s = ico_sphere.verts_packed()
n_pts_total = s.shape[0]
for _s in torch.split(s, params['training.n_pts_per_split'], dim=0):
n_pts = _s.shape[0]
_x_arr, _v_arr, _dv_ds_arr, _d2v_d2s_arr = shape_net(_s, 2)
loss_tmp = velocity_loss(_v_arr, _d2v_d2s_arr, params['loss.alpha']) * n_pts / n_pts_total
(loss_tmp * params['loss.lambda_velocity']).backward(retain_graph=False)
loss_velocity += loss_tmp.detach()
if params['loss.lambda_edge'] != 0:
loss_edge = pytorch3d.loss.mesh_edge_loss(mesh)
(loss_edge * params['loss.lambda_edge']).backward(retain_graph=True)
else:
loss_edge = 0
if params['loss.lambda_normal_consistency'] != 0:
loss_normal_consistency = pytorch3d.loss.mesh_normal_consistency(mesh)
(loss_normal_consistency * params['loss.lambda_normal_consistency']).backward(retain_graph=True)
else:
loss_normal_consistency = 0
if params['loss.lambda_laplacian_smoothing'] != 0:
loss_laplacian_smoothing = pytorch3d.loss.mesh_laplacian_smoothing(mesh)
(loss_laplacian_smoothing * params['loss.lambda_laplacian_smoothing']).backward(retain_graph=True)
else:
loss_laplacian_smoothing = 0
loss = loss_image * params['loss.lambda_image'] + \
loss_silhouette * params['loss.lambda_silhouette'] + \
loss_velocity * params['loss.lambda_velocity'] + \
loss_edge * params['loss.lambda_edge'] + \
loss_normal_consistency * params['loss.lambda_normal_consistency']+ \
loss_laplacian_smoothing * params['loss.lambda_laplacian_smoothing']
return mesh.detach(), (float(loss), float(loss_image), float(loss_silhouette), float(loss_velocity), float(loss_edge), float(loss_normal_consistency), float(loss_laplacian_smoothing))
pbar = tqdm(range(n_iterations))
for N_IT in pbar:
optimizer.zero_grad()
mesh, losses = closure()
optimizer.step()
pbar.set_description('|'.join(f'{l:.2e}' for l in losses).replace('e', '').replace('|', ' || ', 1))
if call_back is not None:
call_back(mesh, losses[0])
call_back(end=True)
return losses
def call_back(mesh=None, loss=None, end=False):
if end:
call_back.history = []
call_back.video_writer.release()
call_back.video_writer = None
return
if not hasattr(call_back, 'history'):
call_back.history = []
call_back.history.append(float(loss))
if min(call_back.history) == loss:
save_models(f'{checkpoint_name}', brdf_net=brdf_net, shape_net=shape_net,
optimizer=optimizer, meta=dict(loss=loss, params=dict(params)))
with torch.no_grad():
frame = render_mesh(mesh,
modes='image_ct', #######
rotations=r[[0,9,40]],
translations=t[[0,9,40]],
image_size=params['rendering.rgb.image_size'],
blur_radius=params['rendering.rgb.blur_radius'],
faces_per_pixel=params['rendering.rgb.faces_per_pixel'],
device=device, background_colors=None, light_poses=lights[[0,9,40]], materials=None, camera_settings=camera_settings)
frame = torch.cat(list(f for f in frame), dim=1)
frame = np.clip((frame * 255 / params['rendering.rgb.max_intensity']).cpu().numpy(), 0, 255).astype(np.uint8) #######
if not hasattr(call_back, 'video_writer') or call_back.video_writer is None:
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
call_back.video_writer = cv2.VideoWriter(f'{checkpoint_name}.mp4', fourcc, 30, (frame.shape[1], frame.shape[0]))
call_back.video_writer.write((frame * np.ones((3), np.uint8))[...,::-1])
if __name__ == '__main__':
params = dotty({
'device': torch.device('cuda:0'),
'n_lobes': 5,
'training':
{
'n_image_per_batch': 48,
'lr': 1e-3,
'compute_velocity_seperately': True,
'n_pts_per_split': 2048,
'sampling_lvl_for_vel_loss': 5,
'n_iterations': 4500, #######
'rand_seed': 0,
'vertex_grad_clip': 0.1,
},
'sampling':
{
'ico_sphere_level': 6, #######
'T': 20,
},
'rendering':
{
'rgb':
{
'image_size': 512, #######
'blur_radius': 0.0, #######
'faces_per_pixel': 4, #######
'max_intensity': 0.15, ####### read_ing:0.09, budd_ha: 0.15, pot_2: 0.15, co_w: 0.15, bea_r: 0.2
'sigma': 1e-4, #######
'gamma': 1e-4, #######
},
'silhouette':
{
'image_size': 512, #######
'blur_radius': 0.1, #######
'faces_per_pixel': 100,
'sigma': 1e-4,
'gamma': 1e-4,
},
},
'loss':
{
'lambda_image': 4.0,
'lambda_silhouette': 1.0, #######
'lambda_velocity': 0.1,# 0.1,
'alpha': 0.01,# 0.05,
'lambda_edge': 0.5,
'lambda_normal_consistency': 0.5,
'lambda_laplacian_smoothing': 0.5,
},
})
device = params['device']
manual_seed(params['training.rand_seed'])
checkpoint_name = 'diligent_reading' ####### 'diligent_reading'
from diligent import load_diligent_mv_full
images, silhouettes, lights, K, P, transf = load_diligent_mv_full('DiLiGenT-MV', 'reading')
images = images.cpu()
r, t = P_matrix_to_rot_trans_vectors(P)
pos_encode_weight = torch.cat(tuple(torch.eye(3) * (1.5**i) for i in range(0,14,1)), dim=0) #######
pos_encode_out_weight = torch.cat(tuple( torch.tensor([1.0/(1.3**i)]*3) for i in range(0,14,1)), dim=0) #######
shape_net = ShapeNet(velocity_mlp= Sequential(
PositionEncoding(pos_encode_weight, pos_encode_out_weight),
MLP(pos_encode_weight.shape[0]*2, [256,256,256,3], ['lrelu','lrelu','lrelu','tanh']),
), T=params['sampling.T']).to(device)
brdf_net = BRDFNet( Sequential(
PositionEncoding(pos_encode_weight, pos_encode_out_weight),
MLP(pos_encode_weight.shape[0]*2, [256]*5+[params['n_lobes']*3+3], ['lrelu']*5+['none']),
), constant_fresnel=True).to(device)
optimizer = torch.optim.Adam(list(shape_net.parameters())+list(brdf_net.parameters()), lr=params['training.lr'])
camera_settings = pytorch_camera(params['rendering.rgb.image_size'], K)
camera_settings_silhoutte = pytorch_camera(params['rendering.silhouette.image_size'], K)
train(images, silhouettes, r, t, shape_net, brdf_net, optimizer, params['training.n_iterations'],
call_back=call_back,
light_dirs=lights,
camera_settings = camera_settings,
camera_settings_silhoutte=camera_settings_silhoutte,
**params)
load_models(f'{checkpoint_name}', brdf_net=brdf_net, shape_net=shape_net,
optimizer=optimizer)
mesh = sample_mesh(shape_net, brdf_net, **params)#init_mesh=init_mesh, **params)
trimesh.Trimesh( ( mesh.verts_packed().detach() @ transf[:3,:3].T + transf[:3,-1]).cpu().numpy(), mesh.faces_packed().cpu().numpy()).export(f'{checkpoint_name}.obj')
compile_video(mesh, f'{checkpoint_name}.mp4', distance=2, render_mode='image_ct', **params)