Skip to content
/ PS-MT Public

[CVPR'22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation

License

Notifications You must be signed in to change notification settings

yyliu01/PS-MT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

67 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PS-MT

[CVPR'22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation

by Yuyuan Liu, Yu Tian, Yuanhong Chen, Fengbei Liu, Vasileios Belagiannis and Gustavo Carneiro

Computer Vision and Pattern Recognition Conference (CVPR), 2022

image

Installation

Please install the dependencies and dataset based on this installation document.

Getting start

Please follow this instruction document to reproduce our results.

Update

  • blender setting results in VOC12 dataset (under deeplabv3+ with resnet101)

    Approach 1/16 (662) 1/8 (1323) 1/4 (2646) 1/2 (5291)
    PS-MT (wandb_log) 78.79 80.29 80.66 80.87
    • please note that, we update the blender splits list end with an extra 0 (e.g., 6620 for 662 labels) in the original directory.
    • you can find the related launching scripts in here.
    • In case you are using blender experiments (which are built on top of the high-quality labels), please compare with the results in this table.

Results

Pascal VOC12 dataset

  1. augmented set

    Backbone 1/16 (662) 1/8 (1323) 1/4 (2646) 1/2 (5291)
    50 72.83 75.70 76.43 77.88
    101 75.50 78.20 78.72 79.76
  2. high quality set (based on res101)

    1/16 (92) 1/8 (183) 1/4 (366) 1/2 (732) full (1464)
    65.80 69.58 76.57 78.42 80.01

CityScape dataset

  1. following the setting of CAC (720x720, CE supervised loss)

    Backbone slid. eval 1/8 (372) 1/4 (744) 1/2 (1488)
    50 74.37 75.15 76.02
    50 75.76 76.92 77.64
    101 76.89 77.60 79.09
  2. following the setting of CPS (800x800, OHEM supervised loss)

    Backbone slid. eval 1/8 (372) 1/4 (744) 1/2 (1488)
    50 77.12 78.38 79.22

Training details

Some examples of training details, including:

  1. VOC12 dataset in this wandb link.
  2. Cityscapes dataset in this wandb link (w/ 1-teacher inference).

In details, after clicking the run (e.g., 1323_voc_rand1), you can checkout:

  1. overall information (e.g., training command line, hardware information and training time).
  2. training details (e.g., loss curves, validation results and visualization)
  3. output logs (well, sometimes might crash ...)

Acknowledgement & Citation

The code is highly based on the CCT. Many thanks for their great work.

Please consider citing this project in your publications if it helps your research.

@article{liu2021perturbed,
  title={Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation},
  author={Liu, Yuyuan and Tian, Yu and Chen, Yuanhong and Liu, Fengbei and Belagiannis, Vasileios and Carneiro, Gustavo},
  journal={arXiv preprint arXiv:2111.12903},
  year={2021}
}

TODO

  • Code of deeplabv3+ for voc12
  • Code of deeplabv3+ for cityscapes

About

[CVPR'22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published