-
Notifications
You must be signed in to change notification settings - Fork 72
/
Copy pathmmt_train_dbscan.py
304 lines (255 loc) · 13.6 KB
/
mmt_train_dbscan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
from __future__ import print_function, absolute_import
import argparse
import os.path as osp
import random
import numpy as np
import sys
import collections
from sklearn.cluster import DBSCAN
from sklearn.preprocessing import normalize
import torch
from torch import nn
from torch.backends import cudnn
from torch.utils.data import DataLoader
import torch.nn.functional as F
from mmt import datasets
from mmt import models
from mmt.trainers import MMTTrainer
from mmt.evaluators import Evaluator, extract_features
from mmt.utils.data import IterLoader
from mmt.utils.data import transforms as T
from mmt.utils.data.sampler import RandomMultipleGallerySampler
from mmt.utils.data.preprocessor import Preprocessor
from mmt.utils.logging import Logger
from mmt.utils.serialization import load_checkpoint, save_checkpoint, copy_state_dict
from mmt.utils.rerank import compute_jaccard_dist
start_epoch = best_mAP = 0
def get_data(name, data_dir):
root = osp.join(data_dir, name)
dataset = datasets.create(name, root)
return dataset
def get_train_loader(dataset, height, width, batch_size, workers,
num_instances, iters, trainset=None):
normalizer = T.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_transformer = T.Compose([
T.Resize((height, width), interpolation=3),
T.RandomHorizontalFlip(p=0.5),
T.Pad(10),
T.RandomCrop((height, width)),
T.ToTensor(),
normalizer,
T.RandomErasing(probability=0.5, mean=[0.485, 0.456, 0.406])
])
train_set = sorted(dataset.train) if trainset is None else trainset
rmgs_flag = num_instances > 0
if rmgs_flag:
sampler = RandomMultipleGallerySampler(train_set, num_instances)
else:
sampler = None
train_loader = IterLoader(
DataLoader(Preprocessor(train_set, root=dataset.images_dir,
transform=train_transformer, mutual=True),
batch_size=batch_size, num_workers=workers, sampler=sampler,
shuffle=not rmgs_flag, pin_memory=True, drop_last=True), length=iters)
return train_loader
def get_test_loader(dataset, height, width, batch_size, workers, testset=None):
normalizer = T.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
test_transformer = T.Compose([
T.Resize((height, width), interpolation=3),
T.ToTensor(),
normalizer
])
if (testset is None):
testset = list(set(dataset.query) | set(dataset.gallery))
test_loader = DataLoader(
Preprocessor(testset, root=dataset.images_dir, transform=test_transformer),
batch_size=batch_size, num_workers=workers,
shuffle=False, pin_memory=True)
return test_loader
def create_model(args, classes):
model_1 = models.create(args.arch, num_features=args.features, dropout=args.dropout, num_classes=classes)
model_2 = models.create(args.arch, num_features=args.features, dropout=args.dropout, num_classes=classes)
model_1_ema = models.create(args.arch, num_features=args.features, dropout=args.dropout, num_classes=classes)
model_2_ema = models.create(args.arch, num_features=args.features, dropout=args.dropout, num_classes=classes)
model_1.cuda()
model_2.cuda()
model_1_ema.cuda()
model_2_ema.cuda()
model_1 = nn.DataParallel(model_1)
model_2 = nn.DataParallel(model_2)
model_1_ema = nn.DataParallel(model_1_ema)
model_2_ema = nn.DataParallel(model_2_ema)
initial_weights = load_checkpoint(args.init_1)
copy_state_dict(initial_weights['state_dict'], model_1)
copy_state_dict(initial_weights['state_dict'], model_1_ema)
model_1_ema.module.classifier.weight.data.copy_(model_1.module.classifier.weight.data)
initial_weights = load_checkpoint(args.init_2)
copy_state_dict(initial_weights['state_dict'], model_2)
copy_state_dict(initial_weights['state_dict'], model_2_ema)
model_2_ema.module.classifier.weight.data.copy_(model_2.module.classifier.weight.data)
for param in model_1_ema.parameters():
param.detach_()
for param in model_2_ema.parameters():
param.detach_()
return model_1, model_2, model_1_ema, model_2_ema
def main():
args = parser.parse_args()
if args.seed is not None:
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
main_worker(args)
def main_worker(args):
global start_epoch, best_mAP
cudnn.benchmark = True
sys.stdout = Logger(osp.join(args.logs_dir, 'log.txt'))
print("==========\nArgs:{}\n==========".format(args))
# Create data loaders
iters = args.iters if (args.iters>0) else None
dataset_source = get_data(args.dataset_source, args.data_dir)
dataset_target = get_data(args.dataset_target, args.data_dir)
test_loader_target = get_test_loader(dataset_target, args.height, args.width, args.batch_size, args.workers)
tar_cluster_loader = get_test_loader(dataset_target, args.height, args.width, args.batch_size, args.workers, testset=dataset_target.train)
sour_cluster_loader = get_test_loader(dataset_source, args.height, args.width, args.batch_size, args.workers, testset=dataset_source.train)
# Create model
model_1, model_2, model_1_ema, model_2_ema = create_model(args, len(dataset_target.train))
# Evaluator
evaluator_1_ema = Evaluator(model_1_ema)
evaluator_2_ema = Evaluator(model_2_ema)
for epoch in range(args.epochs):
dict_f, _ = extract_features(model_1_ema, tar_cluster_loader, print_freq=50)
cf_1 = torch.stack(list(dict_f.values()))
dict_f, _ = extract_features(model_2_ema, tar_cluster_loader, print_freq=50)
cf_2 = torch.stack(list(dict_f.values()))
cf = (cf_1+cf_2)/2
cf = F.normalize(cf, dim=1)
if (args.lambda_value>0):
dict_f, _ = extract_features(model_1_ema, sour_cluster_loader, print_freq=50)
cf_1 = torch.stack(list(dict_f.values()))
dict_f, _ = extract_features(model_2_ema, sour_cluster_loader, print_freq=50)
cf_2 = torch.stack(list(dict_f.values()))
cf_s = (cf_1+cf_2)/2
cf_s = F.normalize(cf_s, dim=1)
rerank_dist = compute_jaccard_dist(cf, lambda_value=args.lambda_value, source_features=cf_s, use_gpu=args.rr_gpu).numpy()
else:
rerank_dist = compute_jaccard_dist(cf, use_gpu=args.rr_gpu).numpy()
if (epoch==0):
# DBSCAN cluster
tri_mat = np.triu(rerank_dist, 1) # tri_mat.dim=2
tri_mat = tri_mat[np.nonzero(tri_mat)] # tri_mat.dim=1
tri_mat = np.sort(tri_mat,axis=None)
rho = 1.6e-3
top_num = np.round(rho*tri_mat.size).astype(int)
eps = tri_mat[:top_num].mean()
print('eps for cluster: {:.3f}'.format(eps))
cluster = DBSCAN(eps=eps, min_samples=4, metric='precomputed', n_jobs=-1)
print('Clustering and labeling...')
labels = cluster.fit_predict(rerank_dist)
num_ids = len(set(labels)) - (1 if -1 in labels else 0)
args.num_clusters = num_ids
print('\n Clustered into {} classes \n'.format(args.num_clusters))
# generate new dataset and calculate cluster centers
new_dataset = []
cluster_centers = collections.defaultdict(list)
for i, ((fname, _, cid), label) in enumerate(zip(dataset_target.train, labels)):
if label==-1: continue
new_dataset.append((fname,label,cid))
cluster_centers[label].append(cf[i])
cluster_centers = [torch.stack(cluster_centers[idx]).mean(0) for idx in sorted(cluster_centers.keys())]
cluster_centers = torch.stack(cluster_centers)
model_1.module.classifier.weight.data[:args.num_clusters].copy_(F.normalize(cluster_centers, dim=1).float().cuda())
model_2.module.classifier.weight.data[:args.num_clusters].copy_(F.normalize(cluster_centers, dim=1).float().cuda())
model_1_ema.module.classifier.weight.data[:args.num_clusters].copy_(F.normalize(cluster_centers, dim=1).float().cuda())
model_2_ema.module.classifier.weight.data[:args.num_clusters].copy_(F.normalize(cluster_centers, dim=1).float().cuda())
train_loader_target = get_train_loader(dataset_target, args.height, args.width,
args.batch_size, args.workers, args.num_instances, iters, trainset=new_dataset)
# Optimizer
params = []
for key, value in model_1.named_parameters():
if not value.requires_grad:
continue
params += [{"params": [value], "lr": args.lr, "weight_decay": args.weight_decay}]
for key, value in model_2.named_parameters():
if not value.requires_grad:
continue
params += [{"params": [value], "lr": args.lr, "weight_decay": args.weight_decay}]
optimizer = torch.optim.Adam(params)
# Trainer
trainer = MMTTrainer(model_1, model_2, model_1_ema, model_2_ema,
num_cluster=args.num_clusters, alpha=args.alpha)
train_loader_target.new_epoch()
trainer.train(epoch, train_loader_target, optimizer,
ce_soft_weight=args.soft_ce_weight, tri_soft_weight=args.soft_tri_weight,
print_freq=args.print_freq, train_iters=len(train_loader_target))
def save_model(model_ema, is_best, best_mAP, mid):
save_checkpoint({
'state_dict': model_ema.state_dict(),
'epoch': epoch + 1,
'best_mAP': best_mAP,
}, is_best, fpath=osp.join(args.logs_dir, 'model'+str(mid)+'_checkpoint.pth.tar'))
if ((epoch+1)%args.eval_step==0 or (epoch==args.epochs-1)):
mAP_1 = evaluator_1_ema.evaluate(test_loader_target, dataset_target.query, dataset_target.gallery, cmc_flag=False)
mAP_2 = evaluator_2_ema.evaluate(test_loader_target, dataset_target.query, dataset_target.gallery, cmc_flag=False)
is_best = (mAP_1>best_mAP) or (mAP_2>best_mAP)
best_mAP = max(mAP_1, mAP_2, best_mAP)
save_model(model_1_ema, (is_best and (mAP_1>mAP_2)), best_mAP, 1)
save_model(model_2_ema, (is_best and (mAP_1<=mAP_2)), best_mAP, 2)
print('\n * Finished epoch {:3d} model no.1 mAP: {:5.1%} model no.2 mAP: {:5.1%} best: {:5.1%}{}\n'.
format(epoch, mAP_1, mAP_2, best_mAP, ' *' if is_best else ''))
print ('Test on the best model.')
checkpoint = load_checkpoint(osp.join(args.logs_dir, 'model_best.pth.tar'))
model_1_ema.load_state_dict(checkpoint['state_dict'])
evaluator_1_ema.evaluate(test_loader_target, dataset_target.query, dataset_target.gallery, cmc_flag=True)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="MMT Training")
# data
parser.add_argument('-ds', '--dataset-source', type=str, default='dukemtmc',
choices=datasets.names())
parser.add_argument('-dt', '--dataset-target', type=str, default='market1501',
choices=datasets.names())
parser.add_argument('-b', '--batch-size', type=int, default=64)
parser.add_argument('-j', '--workers', type=int, default=4)
parser.add_argument('--height', type=int, default=256,
help="input height")
parser.add_argument('--width', type=int, default=128,
help="input width")
parser.add_argument('--num-instances', type=int, default=4,
help="each minibatch consist of "
"(batch_size // num_instances) identities, and "
"each identity has num_instances instances, "
"default: 0 (NOT USE)")
# model
parser.add_argument('-a', '--arch', type=str, default='resnet50',
choices=models.names())
parser.add_argument('--features', type=int, default=0)
parser.add_argument('--dropout', type=float, default=0)
# optimizer
parser.add_argument('--lr', type=float, default=0.00035,
help="learning rate of new parameters, for pretrained "
"parameters it is 10 times smaller than this")
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--alpha', type=float, default=0.999)
parser.add_argument('--weight-decay', type=float, default=5e-4)
parser.add_argument('--soft-ce-weight', type=float, default=0.5)
parser.add_argument('--soft-tri-weight', type=float, default=0.8)
parser.add_argument('--epochs', type=int, default=40)
parser.add_argument('--iters', type=int, default=400)
# training configs
parser.add_argument('--init-1', type=str, default='', metavar='PATH')
parser.add_argument('--init-2', type=str, default='', metavar='PATH')
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--print-freq', type=int, default=1)
parser.add_argument('--eval-step', type=int, default=1)
parser.add_argument('--lambda-value', type=float, default=0)
parser.add_argument('--rr-gpu', action='store_true',
help="use GPU for accelerating clustering")
# path
working_dir = osp.dirname(osp.abspath(__file__))
parser.add_argument('--data-dir', type=str, metavar='PATH',
default=osp.join(working_dir, 'data'))
parser.add_argument('--logs-dir', type=str, metavar='PATH',
default=osp.join(working_dir, 'logs'))
main()