forked from mayuelala/FollowYourPose
-
Notifications
You must be signed in to change notification settings - Fork 0
/
txt2video.py
185 lines (151 loc) · 7 KB
/
txt2video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import argparse
import datetime
import logging
import inspect
import math
import os
from typing import Dict, Optional, Tuple
from omegaconf import OmegaConf
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import diffusers
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
from followyourpose.models.unet import UNet3DConditionModel
from followyourpose.data.hdvila import HDVilaDataset
from followyourpose.pipelines.pipeline_followyourpose import FollowYourPosePipeline
from followyourpose.util import save_videos_grid, ddim_inversion
from einops import rearrange
import sys
sys.path.append('FollowYourPose')
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.10.0.dev0")
logger = get_logger(__name__, log_level="INFO")
def main(
pretrained_model_path: str,
output_dir: str,
validation_data: Dict,
validation_steps: int = 100,
train_batch_size: int = 1,
gradient_accumulation_steps: int = 1,
gradient_checkpointing: bool = True,
resume_from_checkpoint: Optional[str] = None,
mixed_precision: Optional[str] = "fp16",
enable_xformers_memory_efficient_attention: bool = True,
seed: Optional[int] = None,
skeleton_path: Optional[str] = None,
):
*_, config = inspect.getargvalues(inspect.currentframe())
accelerator = Accelerator(
gradient_accumulation_steps=gradient_accumulation_steps,
mixed_precision=mixed_precision,
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if seed is not None:
set_seed(seed)
# Handle the output folder creation
if accelerator.is_main_process:
# now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
# output_dir = os.path.join(output_dir, now)
os.makedirs(output_dir, exist_ok=True)
os.makedirs(f"{output_dir}/samples", exist_ok=True)
os.makedirs(f"{output_dir}/inv_latents", exist_ok=True)
OmegaConf.save(config, os.path.join(output_dir, 'config.yaml'))
# Load scheduler, tokenizer and models.
noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
unet = UNet3DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet")
# Freeze vae and text_encoder
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
unet.requires_grad_(False)
if enable_xformers_memory_efficient_attention:
if is_xformers_available():
unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
if gradient_checkpointing:
unet.enable_gradient_checkpointing()
# Get the validation pipeline
validation_pipeline = FollowYourPosePipeline(
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet,
scheduler=DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
)
validation_pipeline.enable_vae_slicing()
ddim_inv_scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder='scheduler')
ddim_inv_scheduler.set_timesteps(validation_data.num_inv_steps)
unet = accelerator.prepare(unet)
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move text_encode and vae to gpu and cast to weight_dtype
text_encoder.to(accelerator.device, dtype=weight_dtype)
vae.to(accelerator.device, dtype=weight_dtype)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("text2video-fine-tune")
global_step = 0
first_epoch = 0
# Potentially load in the weights and states from a previous save
load_path = None
if resume_from_checkpoint:
if resume_from_checkpoint != "latest":
load_path = resume_from_checkpoint
output_dir = os.path.abspath(os.path.join(resume_from_checkpoint, ".."))
accelerator.print(f"load from checkpoint {load_path}")
accelerator.load_state(load_path)
global_step = int(load_path.split("-")[-1])
if accelerator.is_main_process:
samples = []
generator = torch.Generator(device=accelerator.device)
generator.manual_seed(seed)
ddim_inv_latent = None
from datetime import datetime
now = str(datetime.now())
# print(now)
for idx, prompt in enumerate(validation_data.prompts):
sample = validation_pipeline(prompt, generator=generator, latents=ddim_inv_latent,
skeleton_path=skeleton_path,
**validation_data).videos
save_videos_grid(sample, f"{output_dir}/inference/sample-{global_step}-{str(seed)}-{now}/{prompt}.gif")
samples.append(sample)
samples = torch.concat(samples)
save_path = f"{output_dir}/inference/sample-{global_step}-{str(seed)}-{now}.gif"
save_videos_grid(samples, save_path)
logger.info(f"Saved samples to {save_path}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str)
parser.add_argument("--skeleton_path", type=str)
args = parser.parse_args()
main(**OmegaConf.load(args.config), skeleton_path = args.skeleton_path)