forked from Randl/kmeans_selfsuper
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cluster.py
299 lines (237 loc) · 12.4 KB
/
cluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import argparse
import gc
import os
import time
import numpy as np
import sklearn
from scipy.optimize import linear_sum_assignment
from sklearn import cluster
from sklearn.datasets import make_blobs
from sklearn.decomposition import IncrementalPCA
from sklearn.model_selection import train_test_split
from sklearn.utils import shuffle
from tqdm import trange, tqdm
from torch_utils import get_loaders_objectnet
np.set_printoptions(threshold=np.inf)
model_names = set(filename.split('.')[0].replace('_pca', '') for filename in os.listdir('./results'))
parser = argparse.ArgumentParser(description='IM')
parser.add_argument('--model', dest='model', type=str, default='resnext152_infomin',
help='Model: one of' + ', '.join(model_names))
parser.add_argument('--over', type=float, default=1., help='Mutiplier for number of clusters')
parser.add_argument('--n-components', type=int, default=None, help='Number of components for PCA')
args = parser.parse_args()
print(args)
n_classes = 1000
n_clusters = int(args.over * n_classes)
n_classes_objectnet = 313
n_clusters_objectnet = int(args.over * n_classes_objectnet)
train_size = 12811 # 67
val_size = 500 # 00
epochs = 60
n_features = 2048
batch_size = max(2048, int(2 ** np.ceil(np.log2(n_clusters))))
def get_cost_matrix(y_pred, y, nc=1000):
C = np.zeros((nc, y.max() + 1))
for pred, label in zip(y_pred, y):
C[pred, label] += 1
return C
def get_cost_matrix_objectnet(y_pred, y, objectnet_to_imagenet):
C = np.zeros((n_clusters, y.max() + 1))
ny, nyp = [], []
for pred, label in zip(y_pred, y):
if len(objectnet_to_imagenet[label]) > 0:
C[pred, label] += 1
ny.append(label)
nyp.append(pred)
return C, np.array(nyp), np.array(ny)
def get_best_clusters(C, k=3):
Cpart = C / (C.sum(axis=1, keepdims=True) + 1e-5)
Cpart[C.sum(axis=1) < 10, :] = 0
# print('as', np.argsort(Cpart, axis=None)[::-1])
ind = np.unravel_index(np.argsort(Cpart, axis=None)[::-1], Cpart.shape)[0] # indices of good clusters
_, idx = np.unique(ind, return_index=True)
cluster_idx = ind[np.sort(idx)] # unique indices of good clusters
accs = Cpart.max(axis=1)[cluster_idx]
good_clusters = cluster_idx[:k]
print('Best clusters accuracy: {}'.format(Cpart[good_clusters].max(axis=1)))
print('Best clusters classes: {}'.format(Cpart[good_clusters].argmax(axis=1)))
return good_clusters
def get_worst_clusters(C, k=3):
Cpart = C / (C.sum(axis=1, keepdims=True) + 1e-5)
Cstd = Cpart.std(axis=1)
Cstd[C.sum(axis=1) < 10] = 1000
cluster_idx = np.argsort(Cstd) # low std -- closer to uniform
return cluster_idx[:k]
def print_cluster(ci, y_pred, text):
idx = np.where(y_pred == ci)[0]
print('{}: {}'.format(text, idx))
def assign_classes_hungarian(C):
row_ind, col_ind = linear_sum_assignment(C, maximize=True)
ri, ci = np.arange(C.shape[0]), np.zeros(C.shape[0])
ci[row_ind] = col_ind
# for overclustering, rest is assigned to best matching class
mask = np.ones(C.shape[0], dtype=bool)
mask[row_ind] = False
ci[mask] = C[mask, :].argmax(1)
return ri.astype(int), ci.astype(int)
def assign_classes_majority(C):
col_ind = C.argmax(1)
row_ind = np.arange(C.shape[0])
# best matching class for every cluster
mask = np.ones(C.shape[0], dtype=bool)
mask[row_ind] = False
return row_ind.astype(int), col_ind.astype(int)
def imagenet_assignment_to_objectnet(row_ind, col_ind, imagenet_to_objectnet):
nri, nci = [], []
for i, (ri, ci) in enumerate(zip(row_ind, col_ind)):
if imagenet_to_objectnet[ci] > 0:
nri.append(ri)
nci.append(imagenet_to_objectnet[ci])
return np.array(nri), np.array(nci)
def accuracy_from_assignment(C, row_ind, col_ind, set_size=None):
if set_size is None:
set_size = C.sum()
cnt = C[row_ind, col_ind].sum()
return cnt / set_size
def batches(l, n):
for i in range(0, len(l), n):
yield l[i:i + n]
def print_metrics(message, y_pred, y_true, train_lin_assignment, train_maj_assignment, val_lin_assignment=None,
val_maj_assignment=None, objectnet=False, imagenet_to_objectnet=None, objectnet_to_imagenet=None):
if objectnet:
C, y_pred, y_true = get_cost_matrix_objectnet(y_pred, y_true, objectnet_to_imagenet)
train_lin_assignment = imagenet_assignment_to_objectnet(*train_lin_assignment, imagenet_to_objectnet)
train_maj_assignment = imagenet_assignment_to_objectnet(*train_maj_assignment, imagenet_to_objectnet)
else:
C = get_cost_matrix(y_pred, y_true, n_clusters)
# for r,c in zip(*train_lin_assignment):
# print(r,c)
acc_tr_lin = accuracy_from_assignment(C, *train_lin_assignment)
acc_tr_maj = accuracy_from_assignment(C, *train_maj_assignment)
if val_lin_assignment is not None:
acc_va_lin = accuracy_from_assignment(C, *val_lin_assignment)
acc_va_maj = accuracy_from_assignment(C, *val_maj_assignment)
else:
acc_va_lin, acc_va_maj = 0, 0
# confusion_mat(C, *train_lin_assignment, name=args.model)
ari = sklearn.metrics.adjusted_rand_score(y_true, y_pred)
v_measure = sklearn.metrics.v_measure_score(y_true, y_pred)
ami = sklearn.metrics.adjusted_mutual_info_score(y_true, y_pred)
fm = sklearn.metrics.fowlkes_mallows_score(y_true, y_pred)
print("{}: ARI {:.5e}\tV {:.5e}\tAMI {:.5e}\tFM {:.5e}".format(message, ari, v_measure, ami, fm))
print("{}: ACC TR L {:.5e}\tACC TR M {:.5e}\t"
"ACC VA L {:.5e}\tACC VA M {:.5e}".format(message, acc_tr_lin, acc_tr_maj, acc_va_lin, acc_va_maj))
if message == 'ont':
ri, ci = train_lin_assignment
both = np.zeros(len(ci), dtype=bool)
y = [s for s in objectnet_to_imagenet if len(objectnet_to_imagenet[s]) > 0]
for i in range(len(ci)):
if ci[i] in y:
both[i] = 1
acc_both = accuracy_from_assignment(C, ri[both], ci[both], C[:, ci[both]].sum())
acc_obj = accuracy_from_assignment(C, ri[~both], ci[~both], C[:, ci[~both]].sum())
print("{}: ACC both {:.5e}\tACC obj {:.5e}".format(message, acc_both, acc_obj))
best = get_best_clusters(C, k=3)
worst = get_worst_clusters(C, k=3)
return best, worst
def train_pca(X_train):
bs = max(4096, X_train.shape[1] * 2)
transformer = IncrementalPCA(batch_size=bs) #
for i, batch in enumerate(tqdm(batches(X_train, bs), total=len(X_train) // bs + 1)):
transformer = transformer.partial_fit(batch)
# break
print(transformer.explained_variance_ratio_.cumsum())
return transformer
def cluster_data(X_train, y_train, X_test, y_test, X_test2, y_test2, imagenet_to_objectnet, objectnet_to_imagenet):
minib_k_means = cluster.MiniBatchKMeans(n_clusters=n_clusters, batch_size=batch_size, max_no_improvement=None)
# TODO: save to csv
for e in trange(epochs):
X_train, y_train = shuffle(X_train, y_train)
for batch in batches(X_train, batch_size):
minib_k_means = minib_k_means.partial_fit(batch)
pred = minib_k_means.predict(X_train)
C_train = get_cost_matrix(pred, y_train, n_clusters)
y_pred = minib_k_means.predict(X_test)
C_val = get_cost_matrix(y_pred, y_test, n_clusters)
y_pred2 = minib_k_means.predict(X_test2)
C_val2, _, _ = get_cost_matrix_objectnet(y_pred2, y_test2, objectnet_to_imagenet)
best_im, worst_im = print_metrics('val', y_pred, y_test, assign_classes_hungarian(C_train),
assign_classes_majority(C_train), assign_classes_hungarian(C_val),
assign_classes_majority(C_val))
best_obj, worst_obj = print_metrics('on', y_pred2, y_test2, assign_classes_hungarian(C_train),
assign_classes_majority(C_train), assign_classes_hungarian(C_val2),
assign_classes_majority(C_val2), objectnet=True,
imagenet_to_objectnet=imagenet_to_objectnet,
objectnet_to_imagenet=objectnet_to_imagenet)
for i, cli in enumerate(best_im):
print_cluster(cli, y_pred, 'best imagenet cluster #{}, imagenet index:'.format(i))
print_cluster(cli, y_pred2, 'best imagenet cluster #{}, objectnet index:'.format(i))
for i, cli in enumerate(worst_im):
print_cluster(cli, y_pred, 'worst imagenet cluster #{}, imagenet index:'.format(i))
print_cluster(cli, y_pred2, 'worst imagenet cluster #{}, objectnet index:'.format(i))
if False:
for i, cli in enumerate(best_obj):
print_cluster(cli, y_pred, 'best objectnet cluster #{}, imagenet index:'.format(i))
print_cluster(cli, y_pred2, 'best objectnet cluster #{}, objectnet index:'.format(i))
for i, cli in enumerate(worst_obj):
print_cluster(cli, y_pred, 'worst objectnet cluster #{}, imagenet index:'.format(i))
print_cluster(cli, y_pred2, 'worst objectnet cluster #{}, objectnet index:'.format(i))
def cluster_training_data(X_train, y_train, objectnet_to_imagenet):
minib_k_means = cluster.MiniBatchKMeans(n_clusters=n_clusters_objectnet, batch_size=batch_size,
max_no_improvement=None)
for e in trange(epochs):
X_train, y_train = shuffle(X_train, y_train)
for batch in batches(X_train, batch_size):
minib_k_means = minib_k_means.partial_fit(batch)
pred = minib_k_means.predict(X_train)
C_train = get_cost_matrix(pred, y_train, nc=n_clusters_objectnet)
print_metrics('ont', pred, y_train, assign_classes_hungarian(C_train), assign_classes_majority(C_train),
objectnet_to_imagenet=objectnet_to_imagenet)
def transform_pca(X, transformer):
n = max(4096, X.shape[1] * 2)
for i in trange(0, len(X), n):
X[i:i + n] = transformer.transform(X[i:i + n])
# break
return X
generate = False
if generate:
pass
else:
filename = 'results/' + args.model + '_pca.npz'
if not os.path.exists(filename):
t0 = time.time()
path = 'results/' + args.model + '.npz'
data = np.load(path)
X_train, y_train, X_test, y_test, X_test2, y_test2 = data['train_embs'], data['train_labs'], data['val_embs'], \
data['val_labs'], data['obj_embs'], data['obj_labs']
t1 = time.time()
print(path)
print('Loading time: {:.6f}'.format(t1 - t0))
if len(y_train.shape) > 1:
y_train, y_test, y_test2 = y_train.argmax(1), y_test.argmax(1), y_test2.argmax(1)
X_train, y_train, X_test, y_test, X_test2, y_test2 = X_train.squeeze(), y_train.squeeze(), X_test.squeeze(), y_test.squeeze(), X_test2.squeeze(), y_test2.squeeze()
transformer = train_pca(X_train)
X_train, X_test = transform_pca(X_train, transformer), transform_pca(X_test, transformer)
gc.collect()
np.savez(filename, train_embs=X_train, train_labs=y_train, val_embs=X_test, val_labs=y_test, obj_embs=X_test2,
obj_labs=y_test2, PCA=transformer)
else:
t0 = time.time()
data = np.load(filename)
print(filename)
X_train, y_train, X_test, y_test, X_test2, y_test2 = data['train_embs'], data['train_labs'], data['val_embs'], \
data['val_labs'], data['obj_embs'], data['obj_labs']
# print(y_test2.shape, y_test2, y_test2.max())
if len(y_test2.shape) > 1:
y_test2 = y_test2.argmax(1)
t1 = time.time()
print('Loading time: {:.6f}'.format(t1 - t0))
if args.n_components is not None:
X_train, X_test, X_test2 = X_train[:, :args.n_components], X_test[:, :args.n_components], X_test2[:,
:args.n_components]
objectnet_path = '~/datasets/objectnet'
imagenet_path = '~/datasets/imagenet'
val_loader, imagenet_to_objectnet, objectnet_to_imagenet, objectnet_both, imagenet_both = get_loaders_objectnet(
objectnet_path, imagenet_path, 16, 224, 8, 1, 0)
cluster_data(X_train, y_train, X_test, y_test, X_test2, y_test2, imagenet_to_objectnet, objectnet_to_imagenet)
cluster_training_data(X_test2, y_test2, objectnet_to_imagenet)