Web scraping system for extracting medical-like AI conference papers.
IJCAI, NIPS, ICML, ICLR, IJCNN
CVPR, ICCV
ACL, NAACL, EMNLP, CoNLL, COLING, IJCNLP, EACL, LREC, CL, SEMEVAL, TACL, ALTA, HLT, JEP-TALN-RECITAL, MUC, PACLIC, RANLP, ROCLING-IJCLCLP, TINLAP, TIPSTER
Run medical_ai.py
on the shell:
python3 medical_ai.py
Specify conference name and year:
Input conference name and year (e.g. 'naacl 2019') :
Clipboard options:
Copy result on clipboard? (True/False) :
e.g. For 'nips 2018'
, you get 11 medical-like conference papers:
python3 medical_ai.py
Input conference name and year (e.g. 'naacl 2019') : nips 2018
Copy result on clipboard? (True/False) : False
Connecting...
Searching... 11 matches / 1011
===================================
Hybrid Retrieval-Generation Reinforced Agent for Medical Image Report Generation.
http://papers.nips.cc/paper/7426-hybrid-retrieval-generation-reinforced-agent-for-medical-image-report-generation
Representation Learning for Treatment Effect Estimation from Observational Data.
http://papers.nips.cc/paper/7529-representation-learning-for-treatment-effect-estimation-from-observational-data
Lifelong Inverse Reinforcement Learning.
http://papers.nips.cc/paper/7702-lifelong-inverse-reinforcement-learning
MiME: Multilevel Medical Embedding of Electronic Health Records for Predictive Healthcare.
http://papers.nips.cc/paper/7706-mime-multilevel-medical-embedding-of-electronic-health-records-for-predictive-healthcare
Mental Sampling in Multimodal Representations.
http://papers.nips.cc/paper/7817-mental-sampling-in-multimodal-representations
REFUEL: Exploring Sparse Features in Deep Reinforcement Learning for Fast Disease Diagnosis.
http://papers.nips.cc/paper/7962-refuel-exploring-sparse-features-in-deep-reinforcement-learning-for-fast-disease-diagnosis
Forecasting Treatment Responses Over Time Using Recurrent Marginal Structural Networks.
http://papers.nips.cc/paper/7977-forecasting-treatment-responses-over-time-using-recurrent-marginal-structural-networks
Does mitigating ML's impact disparity require treatment disparity?
http://papers.nips.cc/paper/8035-does-mitigating-mls-impact-disparity-require-treatment-disparity
HOUDINI: Lifelong Learning as Program Synthesis.
http://papers.nips.cc/paper/8086-houdini-lifelong-learning-as-program-synthesis
Bayesian multi-domain learning for cancer subtype discovery from next-generation sequencing count data.
http://papers.nips.cc/paper/8125-bayesian-multi-domain-learning-for-cancer-subtype-discovery-from-next-generation-sequencing-count-data
Life-Long Disentangled Representation Learning with Cross-Domain Latent Homologies.
http://papers.nips.cc/paper/8193-life-long-disentangled-representation-learning-with-cross-domain-latent-homologies
===================================
Medical-like AI papers: 11 / 1011
===================================