-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathneural-network.cpp
145 lines (130 loc) · 4.89 KB
/
neural-network.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
#include "mytypes.h"
#include "js-support.h"
#include <MiniDNN.h> // full MiniDNN
#include <memory>
const char *TAG_NeuralNetwork = "NeuralNetwork";
extern const char *TAG_LAMatrixD;
namespace JsBinding::JsLinearAlgebra {
extern void xnewo(js_State *J, LAMatrixD *m);
}
namespace JsBinding {
namespace JsNeuralNetwork {
void xnewo(js_State *J, NeuralNetwork *b) {
js_getglobal(J, TAG_NeuralNetwork);
js_getproperty(J, -1, "prototype");
js_newuserdata(J, TAG_NeuralNetwork, b, [](js_State *J, void *p) {
delete (NeuralNetwork*)p;
});
}
void init(js_State *J) {
using namespace MiniDNN;
JsSupport::beginDefineClass(J, TAG_NeuralNetwork, [](js_State *J) {
AssertNargs(0)
ReturnObj(new NeuralNetwork);
});
{ // methods
// layer: Convolutional<Act>: (in_width, in_height, in_channels, out_channels, window_width, window_height)
#define ADD_METHOD_LAYER_CONVOLUTIONAL(ActivationFn) \
ADD_METHOD_CPP(NeuralNetwork, addLayerConvolutional##ActivationFn, { \
AssertNargs(6) \
GetArg(NeuralNetwork, 0)->add_layer(new Convolutional<ActivationFn>(GetArgUInt32(1), GetArgUInt32(2), GetArgUInt32(3), GetArgUInt32(4), GetArgUInt32(5), GetArgUInt32(6))); \
ReturnVoid(J); \
}, 0)
ADD_METHOD_LAYER_CONVOLUTIONAL(Identity)
ADD_METHOD_LAYER_CONVOLUTIONAL(ReLU)
ADD_METHOD_LAYER_CONVOLUTIONAL(Tanh)
ADD_METHOD_LAYER_CONVOLUTIONAL(Sigmoid)
ADD_METHOD_LAYER_CONVOLUTIONAL(Softmax)
ADD_METHOD_LAYER_CONVOLUTIONAL(Mish)
#undef ADD_METHOD_LAYER_CONVOLUTIONAL
// layer: MaxPooling<Act>: (in_width, in_height, in_channels, pooling_width, pooling_height)
#define ADD_METHOD_LAYER_MAX_POOL(ActivationFn) \
ADD_METHOD_CPP(NeuralNetwork, addLayerMaxPool##ActivationFn, { \
AssertNargs(5) \
GetArg(NeuralNetwork, 0)->add_layer(new MaxPooling<ActivationFn>(GetArgUInt32(1), GetArgUInt32(2), GetArgUInt32(3), GetArgUInt32(4), GetArgUInt32(5))); \
ReturnVoid(J); \
}, 0)
ADD_METHOD_LAYER_MAX_POOL(Identity)
ADD_METHOD_LAYER_MAX_POOL(ReLU)
ADD_METHOD_LAYER_MAX_POOL(Tanh)
ADD_METHOD_LAYER_MAX_POOL(Sigmoid)
ADD_METHOD_LAYER_MAX_POOL(Softmax)
ADD_METHOD_LAYER_MAX_POOL(Mish)
#undef ADD_METHOD_LAYER_MAX_POOL
// layer: FullyConnected<Act>: (in_size, out_size)
#define ADD_METHOD_LAYER_FULLY_CONNECTED(ActivationFn) \
ADD_METHOD_CPP(NeuralNetwork, addLayerFullyConnected##ActivationFn, { \
AssertNargs(2) \
GetArg(NeuralNetwork, 0)->add_layer(new FullyConnected<ActivationFn>(GetArgUInt32(1), GetArgUInt32(2))); \
ReturnVoid(J); \
}, 0)
ADD_METHOD_LAYER_FULLY_CONNECTED(Identity)
ADD_METHOD_LAYER_FULLY_CONNECTED(ReLU)
ADD_METHOD_LAYER_FULLY_CONNECTED(Tanh)
ADD_METHOD_LAYER_FULLY_CONNECTED(Sigmoid)
ADD_METHOD_LAYER_FULLY_CONNECTED(Softmax)
ADD_METHOD_LAYER_FULLY_CONNECTED(Mish)
#undef ADD_METHOD_LAYER_FULLY_CONNECTED
// output
#define ADD_METHOD_CPP_OUTPUT(LossFn) \
ADD_METHOD_CPP(NeuralNetwork, addOutput##LossFn, { \
AssertNargs(0) \
GetArg(NeuralNetwork, 0)->set_output(new LossFn); \
ReturnVoid(J); \
}, 0)
ADD_METHOD_CPP_OUTPUT(BinaryClassEntropy)
ADD_METHOD_CPP_OUTPUT(MultiClassEntropy)
ADD_METHOD_CPP_OUTPUT(RegressionMSE)
#undef ADD_METHOD_CPP_OUTPUT
ADD_METHOD_CPP(NeuralNetwork, init, {
AssertNargs(3)
GetArg(NeuralNetwork, 0)->init(
GetArgUInt32(1)/*mu: Mean of the normal distribution*/,
GetArgUInt32(2)/*sigma: Standard deviation of the normal distribution*/,
GetArgUInt32(3)/*seed: Set the random seed of the RNG when >0, otherwise use the current random state*/
);
ReturnVoid(J);
}, 0)
ADD_METHOD_CPP(NeuralNetwork, fit, {
AssertNargs(6)
RMSProp opt;
opt.m_lrate = GetArgFloat(1);
GetArg(NeuralNetwork, 0)->fit(
opt,
*GetArg(LAMatrixD, 2), /*predictors: each column is an observation*/
*GetArg(LAMatrixD, 3), /*response: each column is an observation*/
GetArgUInt32(4), /*batch_size*/
GetArgUInt32(5), /*epoch*/
GetArgInt32(6) /*seed*/
);
ReturnVoid(J);
}, 0)
ADD_METHOD_CPP(NeuralNetwork, predict, {
AssertNargs(1)
std::unique_ptr<LAMatrixD> res(new LAMatrixD);
*res = GetArg(NeuralNetwork, 0)->predict(
*GetArg(LAMatrixD, 1) /*predictors: each column is an observation*/
);
ReturnObjExt(LinearAlgebra, res.release());
}, 0)
ADD_METHOD_CPP(NeuralNetwork, write, {
AssertNargs(2)
GetArg(NeuralNetwork, 0)->export_net(
GetArgString(1),
GetArgString(2)
);
ReturnVoid(J);
}, 0)
ADD_METHOD_CPP(NeuralNetwork, read, {
AssertNargs(2)
GetArg(NeuralNetwork, 0)->read_net(
GetArgString(1),
GetArgString(2)
);
ReturnVoid(J);
}, 0)
}
JsSupport::endDefineClass(J);
}
} // JsNeuralNetwork
} // JsBinding