-
Notifications
You must be signed in to change notification settings - Fork 102
/
Copy pathtest_cross_validation.m
64 lines (52 loc) · 2.64 KB
/
test_cross_validation.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
function correct_rate = test_cross_validation(input_dir, label_ind, ...
features_func, fn_filter)
USE_CACHE = false;
USE_DTW = false;
if USE_CACHE
load('features_and_labels', 'features', 'labels');
else
[audio_obj, features] = features_func(input_dir, label_ind, fn_filter);
labels = get(audio_obj, 'Label')';
save('features_and_labels', 'features', 'labels');
end
cp = cvpartition(labels, 'leaveout');
labels = nominal(labels);
order = unique(labels);
if ~USE_DTW
features_mat = [features.mfcc.Mean' features.mfcc.Std' features.mfcc_delta.Mean' ...
features.mfcc_delta.Std' ...
features.centroid.Mean' features.centroid.Std' ...
features.rms.Mean' features.rms.Std'];
features_mat = prewhiten(features_mat);
svm_classf = @(xtrain, ytrain, xtest)(multisvm(xtrain, ytrain, xtest, 'tolkkt', 1e-2, 'kktviolationlevel', 0.1));
svm_mcr = crossval('mcr', features_mat, labels, 'predfun', svm_classf, 'partition', cp);
conf_func = @(xtrain, ytrain, xtest, ytest) confusionmat(ytest, ...
svm_classf(xtrain, ytrain, xtest), 'order', order);
svm_cnf = crossval(conf_func, features_mat, labels, 'partition', cp);
svm_cnf = reshape(sum(svm_cnf),length(order),length(order))
gmm_classf = @(xtrain, ytrain, xtest)(GMM.gmm_classification_test(xtrain', ytrain, xtest'));
gmm_mcr = crossval('mcr', features_mat, labels, 'predfun', gmm_classf, 'partition', cp);
conf_func = @(xtrain, ytrain, xtest, ytest) confusionmat(ytest, ...
gmm_classf(xtrain, ytrain, xtest), 'order', order);
gmm_cnf = crossval(conf_func, features_mat, labels, 'partition', cp);
gmm_cnf = reshape(sum(gmm_cnf),length(order),length(order))
correct_rate = [1-svm_mcr 1-gmm_mcr];
end
if USE_DTW
dtw_classf = @(xtrain, ytrain, xtest)(dtw_classify(xtrain, ytrain, xtest));
dtw_mcr = crossval('mcr', features, labels, 'predfun', dtw_classf, 'partition', cp);
correct_rate = 1 - dtw_mcr;
conf_func = @(xtrain, ytrain, xtest, ytest) confusionmat(ytest, ...
dtw_classf(xtrain, ytrain, xtest), 'order', order);
dtw_cnf = crossval(conf_func, features, labels, 'partition', cp);
dtw_cnf = reshape(sum(dtw_cnf),length(order),length(order))
end
end
function class = dtw_classify(xtrain, ytrain, xtest)
class = nominal(size(xtest, 1));
for i = 1:length(xtest)
sample = xtest{i};
class(i) = dtw_classify_sample(sample, xtrain, ytrain);
end
class = class';
end