-
Notifications
You must be signed in to change notification settings - Fork 316
/
tetris.cpp
157 lines (151 loc) · 6.03 KB
/
tetris.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#include "taichi.h" // Note: You DO NOT have to install taichi or taichi_mpm.
using namespace taichi; // You only need [taichi.h] - see below for
// instructions.
const int n = 160 /*grid resolution (cells)*/, window_size = 800;
const real dt = 60e-4_f / n, frame_dt = 1e-3_f, dx = 1.0_f / n,
inv_dx = 1.0_f / dx;
auto particle_mass = 1.0_f, vol = 1.0_f;
auto hardening = 10.0_f, E = 1e4_f, nu = 0.2_f;
real mu_0 = E / (2 * (1 + nu)), lambda_0 = E * nu / ((1 + nu) * (1 - 2 * nu));
using Vec = Vector2;
using Mat = Matrix2;
struct Particle {
Vec x, v;
Mat F, C;
real Jp;
int c /*color*/;
int type; // 0: elastic 1: plastic 2: liquid
Particle(Vec x, int c, int type, Vec v = Vec(0))
: x(x), v(v), F(1), C(0), Jp(1), c(c), type(type) {
}
};
std::vector<Particle> particles;
Vector3 grid[n + 1][n + 1]; // velocity + mass, node_res = cell_res + 1
// http://zetcode.com/tutorials/javaswingtutorial/thetetrisgame/
int tetris_offsets[7][3][2] = {
// excluding center
{{0, -1}, {1, 0}, {0, -2}}, {{1, 1}, {-1, 0}, {1, 0}},
{{0, -1}, {-1, 0}, {0, -2}}, {{0, 1}, {1, 0}, {1, -1}},
{{1, 0}, {2, 0}, {-1, 0}}, {{0, 1}, {1, 1}, {1, 1}},
{{-1, 0}, {1, 0}, {0, 1}}};
void advance(real dt) {
std::memset(grid, 0, sizeof(grid)); // Reset grid
for (auto &p : particles) { // P2G
Vector2i base_coord =
(p.x * inv_dx - Vec(0.5_f)).cast<int>(); // element-wise floor
Vec fx = p.x * inv_dx - base_coord.cast<real>();
// Quadratic kernels [http://mpm.graphics Eqn. 123, with x=fx, fx-1,fx-2]
Vec w[3]{Vec(0.5) * sqr(Vec(1.5) - fx), Vec(0.75) - sqr(fx - Vec(1.0)),
Vec(0.5) * sqr(fx - Vec(0.5))};
auto e = std::exp(hardening * (1.0_f - p.Jp)), mu = mu_0 * e,
lambda = lambda_0 * e;
real J = determinant(p.F); // Current volume
Mat r, s;
polar_decomp(p.F, r, s); // Polar decomp. for fixed corotated model
Mat cauchy;
if (p.type == 2) {
cauchy = Mat(0.2_f * E * (pow<1>(p.Jp) - 1));
} else {
cauchy = 2 * mu * (p.F - r) * transposed(p.F) + lambda * (J - 1) * J;
}
auto stress = // Cauchy stress times dt and inv_dx
-4 * inv_dx * inv_dx * dt * vol * cauchy;
auto affine = stress + particle_mass * p.C;
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++) { // Scatter to grid
auto dpos = (Vec(i, j) - fx) * dx;
Vector3 mv(p.v * particle_mass,
particle_mass); // translational momentum
grid[base_coord.x + i][base_coord.y + j] +=
w[i].x * w[j].y * (mv + Vector3(affine * dpos, 0));
}
}
for (int i = 0; i <= n; i++)
for (int j = 0; j <= n; j++) { // For all grid nodes
auto &g = grid[i][j];
if (g[2] > 0) { // No need for epsilon here
g /= g[2]; // Normalize by mass
g += dt * Vector3(0, -200, 0); // Gravity
real boundary = 0.05, x = (real)i / n,
y = real(j) / n; // boundary thick.,node coord
if (x < boundary || x > 1 - boundary || y > 1 - boundary)
g = Vector3(0); // Sticky
if (y < boundary)
g[1] = std::max(0.0_f, g[1]); //"Separate"
}
}
for (auto &p : particles) { // Grid to particle
Vector2i base_coord =
(p.x * inv_dx - Vec(0.5_f)).cast<int>(); // element-wise floor
Vec fx = p.x * inv_dx - base_coord.cast<real>();
Vec w[3]{Vec(0.5) * sqr(Vec(1.5) - fx), Vec(0.75) - sqr(fx - Vec(1.0)),
Vec(0.5) * sqr(fx - Vec(0.5))};
p.C = Mat(0);
p.v = Vec(0);
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++) {
auto dpos = (Vec(i, j) - fx),
grid_v = Vec(grid[base_coord.x + i][base_coord.y + j]);
auto weight = w[i].x * w[j].y;
p.v += weight * grid_v; // Velocity
p.C +=
4 * inv_dx * Mat::outer_product(weight * grid_v, dpos); // APIC C
}
p.x += dt * p.v; // Advection
if (p.type <= 1) { // plastic
auto F = (Mat(1) + dt * p.C) * p.F; // MLS-MPM F-update
if (p.type == 1) {
Mat svd_u, sig, svd_v;
svd(F, svd_u, sig, svd_v);
for (int i = 0; i < 2; i++) // Snow Plasticity
sig[i][i] = clamp(sig[i][i], 1.0_f - 2.5e-2_f, 1.0_f + 7.5e-3_f);
real oldJ = determinant(F);
F = svd_u * sig * transposed(svd_v);
real Jp_new = clamp(p.Jp * oldJ / determinant(F), 0.6_f, 20.0_f);
p.Jp = Jp_new;
}
p.F = F;
} else { // liquid
p.Jp *= determinant(Mat(1) + dt * p.C);
}
}
}
void add_object(Vec center, int type, int block) {
auto gen = [&](int k) {
Vector2 offset(0, 0);
if (k >= 0)
offset =
Vector2(tetris_offsets[block][k][0], tetris_offsets[block][k][1]);
int colors[] {0xED553B, 0xF2B134, 0x068587};
for (int i = 0; i < 30 * pow<2>(n / 80.0); i++)
particles.push_back(
Particle((Vec::rand() + offset) * 0.05_f + center, colors[type], type));
};
gen(-1);
gen(0);
gen(1);
gen(2);
}
int main() {
GUI gui("MLS-MPM Tetris", window_size, window_size);
for (int i = 0; i < 7; i++) {
add_object(Vector2(0.3 + i % 2 * 0.3, 0.2 + i * 0.08), i % 3, i);
}
auto &canvas = gui.get_canvas();
int f = 0;
for (int i = 0;; i++) { // Main Loop
advance(dt); // Advance simulation
if (i % int(frame_dt / dt) == 0) { // Visualize frame
canvas.clear(0x112F41); // Clear background
canvas.rect(Vec(0.04), Vec(0.96))
.radius(2)
.color(0x4FB99F)
.close(); // Box
for (auto p : particles)
canvas.circle(p.x).radius(2).color(p.c); // Particles
gui.update(); // Update image
// canvas.img.write_as_image(fmt::format("tmp/{:05d}.png", f++));
}
}
} //----------------------------------------------------------------------------
// g++ tetris.cpp -std=c++14 -g -lX11 -lpthread -O3 -o tetris && ./tetris