-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathdataloader.py
310 lines (253 loc) · 12.4 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import glob
import os
import random
import re
from itertools import chain
import numpy as np
import torch
from PIL import Image, ImageChops
from PIL import ImageDraw
from torch import nn
from torch.nn.functional import pad
from torch.utils.data import Dataset
from torchvision.transforms import ColorJitter, ToTensor, RandomResizedCrop, Compose, Normalize, transforms, Grayscale, \
RandomGrayscale
from torchvision.transforms.functional import resized_crop, to_tensor
use_cuda = torch.cuda.is_available()
FloatTensor = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if use_cuda else torch.LongTensor
Tensor = FloatTensor
"""
Filter difference in brightness, to some degree.
If you have perfect pairs (only the text parts are removed), then set it to 0.
If this value is set very high, say 0.8, some words are filtered out;
if too small, say <0.1, the mask may have noisy white points, and the model will fail to converge.
VERY IMPORTANT: Generate masks before dumping data into the model. Noisy data or almost black masks hurt performances.
"""
brightness_difference = 0.4 # in [0,1]
class TextSegmentationData(Dataset):
def __init__(self, image_folder, mean, std, max_images=False, image_size=(512, 512)):
# get raw images
self.images = glob.glob(os.path.join(image_folder, "raw/*"))
assert len(self.images) > 0
if max_images:
self.images = random.choices(self.images, k=max_images)
print("Find {} images. ".format(len(self.images)))
self.grayscale = Grayscale(num_output_channels=1)
self.img_size = image_size
# image augment
self.transformer = Compose([ColorJitter(brightness=0.2, contrast=0.2, saturation=0, hue=0),
ToTensor(),
Normalize(mean=mean, std=std)])
def __len__(self):
return len(self.images)
def __getitem__(self, item):
img_file = self.images[item]
# avoid multiprocessing on the same image
img_raw = Image.open(img_file).convert('RGB')
img_clean = Image.open(re.sub("raw", 'clean', img_file)).convert("RGB")
img_raw, img_mask = self.process_images(img_raw, img_clean)
# recommend to use nn.MaxPool2d(kernel_size=7, stride=1, padding=3) on the mask
# so regions around the words can also be whited ou
return img_raw, img_mask
def process_images(self, raw, clean):
i, j, h, w = RandomResizedCrop.get_params(raw, scale=(0.5, 2.0), ratio=(3. / 4., 4. / 3.))
raw_img = resized_crop(raw, i, j, h, w, size=self.img_size, interpolation=Image.BICUBIC)
clean_img = resized_crop(clean, i, j, h, w, self.img_size, interpolation=Image.BICUBIC)
# get mask before further image augment
mask_tensor = self.get_mask(raw_img, clean_img)
raw_img = self.transformer(raw_img)
return raw_img, mask_tensor
def get_mask(self, raw_pil, clean_pil):
# use PIL ! It will take care the difference in brightness/contract
mask = ImageChops.difference(raw_pil, clean_pil)
mask = self.grayscale(mask) # single channel
mask = to_tensor(mask)
mask = mask > brightness_difference
return mask.float() # .long()
class ImageInpaintingData(Dataset):
def __init__(self, image_folder, max_images=False, image_size=(512, 512), add_random_masks=False):
super(ImageInpaintingData, self).__init__()
if isinstance(image_folder, str):
self.images = glob.glob(os.path.join(image_folder, "raw/*"))
else:
self.images = list(chain.from_iterable([glob.glob(os.path.join(i, "raw/*")) for i in image_folder]))
assert len(self.images) > 0
if max_images:
self.images = random.choices(self.images, k=max_images)
print(f"Find {len(self.images)} images.")
self.img_size = image_size
self.transformer = Compose([RandomGrayscale(p=0.4),
ColorJitter(brightness=0.2, contrast=0.2, saturation=0, hue=0),
ToTensor(),
# Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
self.add_random_masks = add_random_masks
self.random_mask = RandomMask(image_size[0])
def __len__(self):
return len(self.images)
def __getitem__(self, item):
img_file = self.images[item]
img_raw = Image.open(img_file).convert('RGB')
img_clean = Image.open(re.sub("raw", 'clean', img_file)).convert("RGB")
img_raw, masks, img_clean = self.process_images(img_raw, img_clean)
return img_raw, masks, img_clean
def process_images(self, raw, clean):
i, j, h, w = RandomResizedCrop.get_params(raw, scale=(0.5, 2.0), ratio=(3. / 4., 4. / 3.))
raw_img = resized_crop(raw, i, j, h, w, size=self.img_size, interpolation=Image.BICUBIC)
if self.add_random_masks:
raw_img = self.random_mask.draw(raw_img)
clean_img = resized_crop(clean, i, j, h, w, self.img_size, interpolation=Image.BICUBIC)
# get mask before further image augment
mask = self.get_mask(raw_img, clean_img)
mask_t = to_tensor(mask)
mask_t = (mask_t > brightness_difference).float()
mask_t, _ = torch.max(mask_t, dim=0, keepdim=True)
mask_t = torch.nn.functional.max_pool2d(mask_t.unsqueeze(0), kernel_size=7, stride=1, padding=3)
mask_t = mask_t.squeeze(0)
binary_mask = (1 - mask_t) # valid positions are 1; holes are 0
binary_mask = binary_mask.expand(3, -1, -1)
clean_img = self.transformer(clean_img)
corrupted_img = clean_img * binary_mask
return corrupted_img, binary_mask, clean_img
@staticmethod
def get_mask(raw_pil, clean_pil):
mask = ImageChops.difference(raw_pil, clean_pil)
# mask_array = np.array(mask)
# mask_array = np.where(mask_array > 90, mask_array, np.zeros_like(mask_array))
# mask = Image.fromarray(mask_array)
return mask
class TestDataset(TextSegmentationData):
def __init__(self, image_folder, max_images=False, image_size=(512, 512), random_crop=True):
super(TestDataset, self).__init__(image_folder, False, False,
max_images, image_size)
self.transformer = Compose([ToTensor(),
# Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
self.random_mask = RandomMask(image_size[0])
self.random_crop = random_crop
self.images = self.gen_img(0)
def __len__(self):
return len(self.images)
def __getitem__(self, item):
return self.images
def gen_img(self, item):
img_file = self.images[item]
# avoid multiprocessing on the same image
img_raw = Image.open(img_file).convert('RGB')
img_raw = self.random_mask.draw(img_raw)
img_clean = Image.open(re.sub("raw", 'clean', img_file)).convert("RGB")
img_raw, masks, img_clean = self.process_images(img_raw, img_clean)
return img_raw, masks, img_clean
def process_images(self, raw, clean):
i, j, h, w = RandomResizedCrop.get_params(raw, scale=(0.5, 2.0), ratio=(3. / 4., 4. / 3.))
raw_img = resized_crop(raw, i, j, h, w, size=self.img_size, interpolation=Image.BICUBIC)
clean_img = resized_crop(clean, i, j, h, w, self.img_size, interpolation=Image.BICUBIC)
# get mask before further image augment
mask = self.get_mask(raw_img, clean_img)
mask_t = to_tensor(mask)
mask_t = (mask_t > 0).float()
mask_t = torch.nn.functional.max_pool2d(mask_t, kernel_size=5, stride=1, padding=2)
# mask_t = mask_t.byte()
raw_img = ImageChops.difference(mask, clean_img)
return self.transformer(raw_img), 1 - mask_t, self.transformer(clean_img)
def get_mask(self, raw_pil, clean_pil):
mask = ImageChops.difference(raw_pil, clean_pil)
mask_array = np.array(mask)
mask_array = np.where(mask_array > 90, mask_array, np.zeros_like(mask_array))
mask = Image.fromarray(mask_array)
return mask
class DanbooruDataset(Dataset):
def __init__(self, image_folder, name_tag_dict, mean, std,
image_size=512, max_images=False, num_class=1000):
super(DanbooruDataset, self).__init__()
assert image_size % 16 == 0
self.images = glob.glob(os.path.join(image_folder, '*'))
assert len(self.images) > 0
if max_images:
self.images = random.choices(self.images, k=max_images)
print("Find {} images. ".format(len(self.images)))
self.name_tag_dict = name_tag_dict
self.img_transform = self.transformer(mean, std)
# one hot encoding
self.onehot = torch.eye(num_class)
def __len__(self):
return len(self.images)
def __getitem__(self, item):
image_file = self.images[item]
image = self.img_transform(Image.open(image_file).convert("RGB"))
basename = os.path.basename(image_file).split('.')[0]
tags = self.name_tag_dict[basename]
target = self.onehot.index_select(0, torch.LongTensor(tags)).sum(0) # (1, num_class)
return image, LongTensor(target)
@staticmethod
def transformer(mean, std):
m = Compose([RandomGrayscale(p=0.2),
# RandomHorizontalFlip(p=0.2), don't use them since label locations are not available
# RandomVerticalFlip(p=0.2),
ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.2),
ToTensor(),
Normalize(mean, std)])
return m
class EvaluateSet(Dataset):
def __init__(self, mean, std, img_folder=None, resize=512):
self.eval_imgs = [glob.glob(img_folder + "/*.{}".format(i), recursive=True) for i in ['jpg', 'jpeg', 'png']]
self.eval_imgs = list(chain.from_iterable(self.eval_imgs))
assert resize % 8 == 0
self.resize = resize
self.transformer = Compose([ToTensor(),
Normalize(mean=mean, std=std),
])
print("Find {} test images. ".format(len(self.eval_imgs)))
def __len__(self):
return len(self.eval_imgs)
def __getitem__(self, item):
img_file = self.eval_imgs[item]
img = Image.open(img_file).convert("RGB")
return self.resize_pad_tensor(img), img_file
def resize_pad_tensor(self, pil_img):
origin = to_tensor(pil_img).unsqueeze(0)
fix_len = self.resize
long = max(pil_img.size)
ratio = fix_len / long
new_size = tuple(map(lambda x: int(x * ratio) // 8 * 8, pil_img.size))
img = pil_img.resize(new_size, Image.BICUBIC)
# img = pil_img
img = self.transformer(img).unsqueeze(0)
_, _, h, w = img.size()
if fix_len > w:
boarder_pad = (0, fix_len - w, 0, 0)
else:
boarder_pad = (0, 0, 0, fix_len - h)
img = pad(img, boarder_pad, value=0)
mask_resizer = self.resize_mask(boarder_pad, pil_img.size)
return img, origin, mask_resizer
@staticmethod
def resize_mask(padded_values, origin_size):
# resize generated mask back to the input image size
unpad = tuple(map(lambda x: -x, padded_values))
upsampler = nn.Upsample(size=tuple(reversed(origin_size)), mode='bilinear', align_corners=False)
m = Compose([
torch.nn.ZeroPad2d(unpad),
transforms.Lambda(lambda x: upsampler(x.float())),
transforms.Lambda(lambda x: x.expand(-1, 3, -1, -1) > 0)
])
return m
class RandomMask:
def __init__(self, size, offset=10):
self.size = size - offset
self.offset = offset
def draw(self, pil_img):
draw = ImageDraw.Draw(pil_img)
# draw liens
for i in range(np.random.randint(1, 4)):
cords = np.random.randint(self.offset, self.size, 4)
width = np.random.randint(5, 15)
draw.line(cords.tolist(), width=width, fill=255)
# draw circles
for i in range(np.random.randint(1, 4)):
cords = np.random.randint(self.offset, self.size, 2)
cords.sort()
ex = np.random.randint(10, 50, 2)
draw.ellipse(np.concatenate([cords, cords + ex]).tolist(), fill=255)
return pil_img