|
2 | 2 | "cells": [ |
3 | 3 | { |
4 | 4 | "cell_type": "code", |
5 | | - "execution_count": null, |
| 5 | + "execution_count": 2, |
6 | 6 | "metadata": {}, |
7 | 7 | "outputs": [], |
8 | 8 | "source": [ |
9 | 9 | "import tensorflow as tf\n", |
10 | 10 | "import numpy as np\n", |
11 | 11 | "import cv2\n", |
| 12 | + "import pickle\n", |
12 | 13 | "import matplotlib.pyplot as plt\n", |
13 | 14 | "from datetime import datetime" |
14 | 15 | ] |
|
26 | 27 | }, |
27 | 28 | { |
28 | 29 | "cell_type": "code", |
29 | | - "execution_count": null, |
| 30 | + "execution_count": 1, |
30 | 31 | "metadata": {}, |
31 | 32 | "outputs": [], |
32 | 33 | "source": [ |
|
91 | 92 | " [('MAX', (1,3,3,1), (1,1,1,1)), (1, 1, depths[3])]]\n", |
92 | 93 | " out = []\n", |
93 | 94 | " for i in range(4):\n", |
94 | | - " with tf.variable_scope('component_{}'.format(i+1), reuse = tf.AUTO_REUSE):\n", |
95 | | - " out.append(conv_pool(x, layers[i]))\n", |
| 95 | + " with tf.variable_scope('component_{}'.format(i+1), reuse = tf.AUTO_REUSE):\n", |
| 96 | + " out.append(conv_pool(x, layers[i])) \n", |
96 | 97 | " return tf.concat(out, axis=-1)" |
97 | 98 | ] |
98 | 99 | }, |
|
209 | 210 | " saver.save(sess, '/tmp/final.ckpt')\n", |
210 | 211 | " file_writer.close()" |
211 | 212 | ] |
| 213 | + }, |
| 214 | + { |
| 215 | + "cell_type": "code", |
| 216 | + "execution_count": 3, |
| 217 | + "metadata": {}, |
| 218 | + "outputs": [], |
| 219 | + "source": [ |
| 220 | + "def unpickle(file): \n", |
| 221 | + " with open(file, 'rb') as fo:\n", |
| 222 | + " dic = pickle.load(fo, encoding='bytes')\n", |
| 223 | + " return dic" |
| 224 | + ] |
| 225 | + }, |
| 226 | + { |
| 227 | + "cell_type": "code", |
| 228 | + "execution_count": 7, |
| 229 | + "metadata": {}, |
| 230 | + "outputs": [ |
| 231 | + { |
| 232 | + "ename": "TypeError", |
| 233 | + "evalue": "unsupported operand type(s) for +: 'Tensor' and 'float'", |
| 234 | + "output_type": "error", |
| 235 | + "traceback": [ |
| 236 | + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
| 237 | + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", |
| 238 | + "\u001b[0;32m<ipython-input-7-f03d99b529c7>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mtf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mSession\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0msess\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlayers\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbatch_normalization\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0meval\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
| 239 | + "\u001b[0;32m~/anaconda3/envs/tensorflow/lib/python3.6/site-packages/tensorflow/python/layers/normalization.py\u001b[0m in \u001b[0;36mbatch_normalization\u001b[0;34m(inputs, axis, momentum, epsilon, center, scale, beta_initializer, gamma_initializer, moving_mean_initializer, moving_variance_initializer, beta_regularizer, gamma_regularizer, beta_constraint, gamma_constraint, training, trainable, name, reuse, renorm, renorm_clipping, renorm_momentum, fused, virtual_batch_size, adjustment)\u001b[0m\n\u001b[1;32m 778\u001b[0m \u001b[0m_reuse\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mreuse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 779\u001b[0m _scope=name)\n\u001b[0;32m--> 780\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mlayer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtraining\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtraining\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 781\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 782\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", |
| 240 | + "\u001b[0;32m~/anaconda3/envs/tensorflow/lib/python3.6/site-packages/tensorflow/python/layers/base.py\u001b[0m in \u001b[0;36mapply\u001b[0;34m(self, inputs, *args, **kwargs)\u001b[0m\n\u001b[1;32m 826\u001b[0m \u001b[0mOutput\u001b[0m \u001b[0mtensor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 827\u001b[0m \"\"\"\n\u001b[0;32m--> 828\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__call__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 829\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 830\u001b[0m def _add_inbound_node(self,\n", |
| 241 | + "\u001b[0;32m~/anaconda3/envs/tensorflow/lib/python3.6/site-packages/tensorflow/python/layers/base.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, inputs, *args, **kwargs)\u001b[0m\n\u001b[1;32m 715\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 716\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0min_deferred_mode\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 717\u001b[0;31m \u001b[0moutputs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcall\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 718\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0moutputs\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 719\u001b[0m raise ValueError('A layer\\'s `call` method should return a Tensor '\n", |
| 242 | + "\u001b[0;32m~/anaconda3/envs/tensorflow/lib/python3.6/site-packages/tensorflow/python/layers/normalization.py\u001b[0m in \u001b[0;36mcall\u001b[0;34m(self, inputs, training)\u001b[0m\n\u001b[1;32m 612\u001b[0m \u001b[0moffset\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 613\u001b[0m \u001b[0mscale\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 614\u001b[0;31m self.epsilon)\n\u001b[0m\u001b[1;32m 615\u001b[0m \u001b[0;31m# If some components of the shape got lost due to adjustments, fix that.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 616\u001b[0m \u001b[0moutputs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_shape\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minput_shape\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
| 243 | + "\u001b[0;32m~/anaconda3/envs/tensorflow/lib/python3.6/site-packages/tensorflow/python/ops/nn_impl.py\u001b[0m in \u001b[0;36mbatch_normalization\u001b[0;34m(x, mean, variance, offset, scale, variance_epsilon, name)\u001b[0m\n\u001b[1;32m 828\u001b[0m \"\"\"\n\u001b[1;32m 829\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mops\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname_scope\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"batchnorm\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmean\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvariance\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mscale\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moffset\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 830\u001b[0;31m \u001b[0minv\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmath_ops\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrsqrt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvariance\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mvariance_epsilon\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 831\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mscale\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 832\u001b[0m \u001b[0minv\u001b[0m \u001b[0;34m*=\u001b[0m \u001b[0mscale\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
| 244 | + "\u001b[0;31mTypeError\u001b[0m: unsupported operand type(s) for +: 'Tensor' and 'float'" |
| 245 | + ] |
| 246 | + } |
| 247 | + ], |
| 248 | + "source": [ |
| 249 | + "a = tf.constant([[1,2,3], [4,5,6]])\n", |
| 250 | + "\n", |
| 251 | + "with tf.Session() as sess:\n", |
| 252 | + " b = tf.layers.batch_normalization(a, axis = 0)\n", |
| 253 | + " print(b.eval())" |
| 254 | + ] |
| 255 | + }, |
| 256 | + { |
| 257 | + "cell_type": "code", |
| 258 | + "execution_count": null, |
| 259 | + "metadata": {}, |
| 260 | + "outputs": [], |
| 261 | + "source": [] |
212 | 262 | } |
213 | 263 | ], |
214 | 264 | "metadata": { |
|
0 commit comments