Skip to content

Commit ccbeea1

Browse files
committed
nothing
1 parent c1b3c16 commit ccbeea1

File tree

1 file changed

+54
-4
lines changed

1 file changed

+54
-4
lines changed

VQA.ipynb

Lines changed: 54 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -2,13 +2,14 @@
22
"cells": [
33
{
44
"cell_type": "code",
5-
"execution_count": null,
5+
"execution_count": 2,
66
"metadata": {},
77
"outputs": [],
88
"source": [
99
"import tensorflow as tf\n",
1010
"import numpy as np\n",
1111
"import cv2\n",
12+
"import pickle\n",
1213
"import matplotlib.pyplot as plt\n",
1314
"from datetime import datetime"
1415
]
@@ -26,7 +27,7 @@
2627
},
2728
{
2829
"cell_type": "code",
29-
"execution_count": null,
30+
"execution_count": 1,
3031
"metadata": {},
3132
"outputs": [],
3233
"source": [
@@ -91,8 +92,8 @@
9192
" [('MAX', (1,3,3,1), (1,1,1,1)), (1, 1, depths[3])]]\n",
9293
" out = []\n",
9394
" for i in range(4):\n",
94-
" with tf.variable_scope('component_{}'.format(i+1), reuse = tf.AUTO_REUSE):\n",
95-
" out.append(conv_pool(x, layers[i]))\n",
95+
" with tf.variable_scope('component_{}'.format(i+1), reuse = tf.AUTO_REUSE):\n",
96+
" out.append(conv_pool(x, layers[i])) \n",
9697
" return tf.concat(out, axis=-1)"
9798
]
9899
},
@@ -209,6 +210,55 @@
209210
" saver.save(sess, '/tmp/final.ckpt')\n",
210211
" file_writer.close()"
211212
]
213+
},
214+
{
215+
"cell_type": "code",
216+
"execution_count": 3,
217+
"metadata": {},
218+
"outputs": [],
219+
"source": [
220+
"def unpickle(file): \n",
221+
" with open(file, 'rb') as fo:\n",
222+
" dic = pickle.load(fo, encoding='bytes')\n",
223+
" return dic"
224+
]
225+
},
226+
{
227+
"cell_type": "code",
228+
"execution_count": 7,
229+
"metadata": {},
230+
"outputs": [
231+
{
232+
"ename": "TypeError",
233+
"evalue": "unsupported operand type(s) for +: 'Tensor' and 'float'",
234+
"output_type": "error",
235+
"traceback": [
236+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
237+
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
238+
"\u001b[0;32m<ipython-input-7-f03d99b529c7>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mtf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mSession\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0msess\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlayers\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbatch_normalization\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0meval\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
239+
"\u001b[0;32m~/anaconda3/envs/tensorflow/lib/python3.6/site-packages/tensorflow/python/layers/normalization.py\u001b[0m in \u001b[0;36mbatch_normalization\u001b[0;34m(inputs, axis, momentum, epsilon, center, scale, beta_initializer, gamma_initializer, moving_mean_initializer, moving_variance_initializer, beta_regularizer, gamma_regularizer, beta_constraint, gamma_constraint, training, trainable, name, reuse, renorm, renorm_clipping, renorm_momentum, fused, virtual_batch_size, adjustment)\u001b[0m\n\u001b[1;32m 778\u001b[0m \u001b[0m_reuse\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mreuse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 779\u001b[0m _scope=name)\n\u001b[0;32m--> 780\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mlayer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtraining\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtraining\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 781\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 782\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
240+
"\u001b[0;32m~/anaconda3/envs/tensorflow/lib/python3.6/site-packages/tensorflow/python/layers/base.py\u001b[0m in \u001b[0;36mapply\u001b[0;34m(self, inputs, *args, **kwargs)\u001b[0m\n\u001b[1;32m 826\u001b[0m \u001b[0mOutput\u001b[0m \u001b[0mtensor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 827\u001b[0m \"\"\"\n\u001b[0;32m--> 828\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__call__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 829\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 830\u001b[0m def _add_inbound_node(self,\n",
241+
"\u001b[0;32m~/anaconda3/envs/tensorflow/lib/python3.6/site-packages/tensorflow/python/layers/base.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, inputs, *args, **kwargs)\u001b[0m\n\u001b[1;32m 715\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 716\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0min_deferred_mode\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 717\u001b[0;31m \u001b[0moutputs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcall\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 718\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0moutputs\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 719\u001b[0m raise ValueError('A layer\\'s `call` method should return a Tensor '\n",
242+
"\u001b[0;32m~/anaconda3/envs/tensorflow/lib/python3.6/site-packages/tensorflow/python/layers/normalization.py\u001b[0m in \u001b[0;36mcall\u001b[0;34m(self, inputs, training)\u001b[0m\n\u001b[1;32m 612\u001b[0m \u001b[0moffset\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 613\u001b[0m \u001b[0mscale\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 614\u001b[0;31m self.epsilon)\n\u001b[0m\u001b[1;32m 615\u001b[0m \u001b[0;31m# If some components of the shape got lost due to adjustments, fix that.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 616\u001b[0m \u001b[0moutputs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_shape\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minput_shape\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
243+
"\u001b[0;32m~/anaconda3/envs/tensorflow/lib/python3.6/site-packages/tensorflow/python/ops/nn_impl.py\u001b[0m in \u001b[0;36mbatch_normalization\u001b[0;34m(x, mean, variance, offset, scale, variance_epsilon, name)\u001b[0m\n\u001b[1;32m 828\u001b[0m \"\"\"\n\u001b[1;32m 829\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mops\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname_scope\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"batchnorm\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmean\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvariance\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mscale\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moffset\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 830\u001b[0;31m \u001b[0minv\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmath_ops\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrsqrt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvariance\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mvariance_epsilon\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 831\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mscale\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 832\u001b[0m \u001b[0minv\u001b[0m \u001b[0;34m*=\u001b[0m \u001b[0mscale\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
244+
"\u001b[0;31mTypeError\u001b[0m: unsupported operand type(s) for +: 'Tensor' and 'float'"
245+
]
246+
}
247+
],
248+
"source": [
249+
"a = tf.constant([[1,2,3], [4,5,6]])\n",
250+
"\n",
251+
"with tf.Session() as sess:\n",
252+
" b = tf.layers.batch_normalization(a, axis = 0)\n",
253+
" print(b.eval())"
254+
]
255+
},
256+
{
257+
"cell_type": "code",
258+
"execution_count": null,
259+
"metadata": {},
260+
"outputs": [],
261+
"source": []
212262
}
213263
],
214264
"metadata": {

0 commit comments

Comments
 (0)