-
Notifications
You must be signed in to change notification settings - Fork 121
/
streamlit_app.py
49 lines (43 loc) · 2.18 KB
/
streamlit_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import streamlit as st
import sqlite3
import pandas as pd
from datetime import datetime
import pyupbit
def load_data():
db_path = 'trading_decisions.sqlite'
with sqlite3.connect(db_path) as conn:
cursor = conn.cursor()
cursor.execute("SELECT timestamp, decision, percentage, reason, btc_balance, krw_balance, btc_avg_buy_price, btc_krw_price FROM decisions ORDER BY timestamp")
decisions = cursor.fetchall()
df = pd.DataFrame(decisions, columns=['timestamp', 'decision', 'percentage', 'reason', 'btc_balance', 'krw_balance', 'btc_avg_buy_price', 'btc_krw_price'])
return df
def main():
st.set_page_config(layout="wide")
st.title("실시간 비트코인 GPT 자동매매 기록")
st.write("by 유튜버 [조코딩](https://youtu.be/MgatVqXXoeA) - [Github](https://github.com/youtube-jocoding/gpt-bitcoin)")
st.write("---")
df = load_data()
if not df.empty:
start_value = 2000000
current_price = pyupbit.get_orderbook(ticker="KRW-BTC")['orderbook_units'][0]["ask_price"]
latest_row = df.iloc[-1]
btc_balance = latest_row['btc_balance']
krw_balance = latest_row['krw_balance']
btc_avg_buy_price = latest_row['btc_avg_buy_price']
current_value = int(btc_balance * current_price + krw_balance)
time_diff = datetime.now() - pd.to_datetime(df.iloc[0]['timestamp'])
days = time_diff.days
hours = time_diff.seconds // 3600
minutes = (time_diff.seconds % 3600) // 60
st.header("수익률:"+str(round((current_value-start_value)/start_value*100, 2))+"%")
st.write("현재 시각:"+str(datetime.now()))
st.write("투자기간:", days, "일", hours, "시간", minutes, "분")
st.write("시작 원금", start_value, "원")
st.write("현재 비트코인 가격:", current_price, "원")
st.write("현재 보유 현금:", krw_balance, "원")
st.write("현재 보유 비트코인:", btc_balance, "BTC")
st.write("BTC 매수 평균가격:", btc_avg_buy_price, "원")
st.write("현재 원화 가치 평가:", current_value, "원")
st.dataframe(df, use_container_width=True)
if __name__ == '__main__':
main()