Skip to content

Latest commit

 

History

History

semantic_segmentation

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

MPViT on ADE20K Semantic segmentation

This folder contains UperNet results on top of mmsegmentation.

Main results on ADE20K Semantic segmentation

All model are trained using ImageNet-1K pretrained weight.

Backbone Method Crop Size Lr Schd mIoU #params FLOPs weight
MPViT-S UperNet 512x512 160K 48.3 52M 943G weight
MPViT-B UperNet 512x512 160K 50.3 105M 1185G weight

Preparation

Required packages

We test all models using pytorch==1.7.0 mmcv-full==1.3.0 mmseg==0.11.0 cuda==10.1 on NVIDIA V100 GPUs.

Install the mmsegmentation library.

pip install mmcv-full==1.3.0 mmsegmentation==0.11.0

Data

Please refer to the datasets guide of mmseg to prepare the ADE20K dataset.

Evaluation

For more details, please refer to the guide of mmseg.

tools/dist_test.sh  <CONFIG_PATH> <CHECKPOINT_PATH or URL> <NUM_GPUS> --eval mIoU

For UperNet with MPViT-Small backbone:

tools/dist_test.sh configs/mpvit/upernet/upernet_mpvit_small_160k_ade20k.py https://dl.dropbox.com/s/5opqzboalok7lme/upernet_mpvit_small.pth 8 --eval mIoU
This should give the following result:
+--------+-------+-------+-------+
| Scope  | mIoU  | mAcc  | aAcc  |
+--------+-------+-------+-------+
| global | 48.25 | 60.56 | 82.43 |
+--------+-------+-------+-------+

For UperNet with MPViT-Base backbone:

 tools/dist_test.sh configs/mpvit/upernet/upernet_mpvit_base_160k_ade20k.py https://dl.dropbox.com/s/shr88fojdcqvhpr/upernet_mpvit_base.pth  8 --eval mIoU
This should give the following result:
+--------+-------+-------+-------+
| Scope  | mIoU  | mAcc  | aAcc  |
+--------+-------+-------+-------+
| global | 50.26 | 62.18 | 83.55 |
+--------+-------+-------+-------+

Training

For more details, please refer to the guide of mmseg.

./tools/dist_train.sh <CONFIG_PATH> <NUM_GPUS>

For UperNet with MPViT-Small backbone:

./tools/dist_train.sh configs/mpvit/upernet/upernet_mpvit_small_160k_ade20k.py 8

For UperNet with MPViT-Base backbone:

./tools/dist_train.sh configs/mpvit/upernet/upernet_mpvit_base_160k_ade20k.py 8

Acknowledgment

Thanks to mmsegmentation for the UperNet implementation. We follow the optimization hyperparameters from Swin Transformer and XCiT repositories.