forked from Zeyi-Lin/HivisionIDPhotos
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_judgement_align.py
701 lines (622 loc) · 25 KB
/
face_judgement_align.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
import math
import cv2
import numpy as np
from hivisionai.hycv.face_tools import face_detect_mtcnn
from hivisionai.hycv.utils import get_box_pro
from hivisionai.hycv.vision import (
resize_image_esp,
IDphotos_cut,
add_background,
calTime,
resize_image_by_min,
rotate_bound_4channels,
)
import onnxruntime
from src.error import IDError
from src.imageTransform import (
standard_photo_resize,
hollowOutFix,
get_modnet_matting,
draw_picture_dots,
detect_distance,
)
from src.layoutCreate import generate_layout_photo
from src.move_image import move
testImages = []
class LinearFunction_TwoDots(object):
"""
通过两个坐标点构建线性函数
"""
def __init__(self, dot1, dot2):
self.d1 = dot1
self.d2 = dot2
self.mode = "normal"
if self.d2.x != self.d1.x:
self.k = (self.d2.y - self.d1.y) / max((self.d2.x - self.d1.x), 1)
self.b = self.d2.y - self.k * self.d2.x
else:
self.mode = "x=1"
def forward(self, input_, mode="x"):
if mode == "x":
if self.mode == "normal":
return self.k * input_ + self.b
else:
return 0
elif mode == "y":
if self.mode == "normal":
return (input_ - self.b) / self.k
else:
return self.d1.x
def forward_x(self, x):
if self.mode == "normal":
return self.k * x + self.b
else:
return 0
def forward_y(self, y):
if self.mode == "normal":
return (y - self.b) / self.k
else:
return self.d1.x
class Coordinate(object):
def __init__(self, x, y):
self.x = x
self.y = y
def __str__(self):
return "({}, {})".format(self.x, self.y)
@calTime
def face_number_and_angle_detection(input_image):
"""
本函数的功能是利用机器学习算法计算图像中人脸的数目与关键点,并通过关键点信息来计算人脸在平面上的旋转角度。
当前人脸数目!=1 时,将 raise 一个错误信息并终止全部程序。
Args:
input_image: numpy.array(3 channels),用户上传的原图(经过了一些简单的 resize)
Returns:
- dets: list,人脸定位信息 (x1, y1, x2, y2)
- rotation: int,旋转角度,正数代表逆时针偏离,负数代表顺时针偏离
- landmark: list,人脸关键点信息
"""
# face++ 人脸检测
# input_image_bytes = CV2Bytes.cv2_byte(input_image, ".jpg")
# face_num, face_rectangle, landmarks, headpose = megvii_face_detector(input_image_bytes)
# print(face_rectangle)
faces, landmarks = face_detect_mtcnn(input_image)
face_num = len(faces)
# 排除不合人脸数目要求(必须是 1)的照片
if face_num == 0 or face_num >= 2:
if face_num == 0:
status_id_ = "1101"
else:
status_id_ = "1102"
raise IDError(
f"人脸检测出错!检测出了{face_num}张人脸",
face_num=face_num,
status_id=status_id_,
)
# 获得人脸定位坐标
face_rectangle = []
for iter, (x1, y1, x2, y2, _) in enumerate(faces):
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
face_rectangle.append(
{"top": x1, "left": y1, "width": x2 - x1, "height": y2 - y1}
)
# 获取人脸定位坐标与关键点信息
dets = face_rectangle[0]
# landmark = landmarks[0]
#
# # 人脸旋转角度计算
# rotation = eulerZ(landmark)
# return dets, rotation, landmark
return dets
@calTime
def image_matting(input_image, params):
"""
本函数的功能为全局人像抠图。
Args:
- input_image: numpy.array(3 channels),用户原图
Returns:
- origin_png_image: numpy.array(4 channels),抠好的图
"""
print("抠图采用本地模型")
origin_png_image = get_modnet_matting(
input_image, sess=params["modnet"]["human_sess"]
)
origin_png_image = hollowOutFix(origin_png_image) # 抠图洞洞修补
return origin_png_image
@calTime
def rotation_ajust(input_image, rotation, a, IS_DEBUG=False):
"""
本函数的功能是根据旋转角对原图进行无损旋转,并返回结果图与附带信息。
Args:
- input_image: numpy.array(3 channels), 用户上传的原图(经过了一些简单的 resize、美颜)
- rotation: float, 人的五官偏离"端正"形态的旋转角
- a: numpy.array(1 channel), matting 图的 matte
- IS_DEBUG: DEBUG 模式开关
Returns:
- result_jpg_image: numpy.array(3 channels), 原图旋转的结果图
- result_png_image: numpy.array(4 channels), matting 图旋转的结果图
- L1: CLassObject, 根据旋转点连线所构造函数
- L2: ClassObject, 根据旋转点连线所构造函数
- dotL3: ClassObject, 一个特殊裁切点的坐标
- clockwise: int, 表示照片是顺时针偏离还是逆时针偏离
- drawed_dots_image: numpy.array(3 channels), 在 result_jpg_image 上标定了 4 个旋转点的结果图,用于 DEBUG 模式
"""
# Step1. 数据准备
rotation = -1 * rotation # rotation 为正数->原图顺时针偏离,为负数->逆时针偏离
h, w = input_image.copy().shape[:2]
# Step2. 无损旋转
result_jpg_image, result_png_image, cos, sin = rotate_bound_4channels(
input_image, a, rotation
)
# Step3. 附带信息计算
nh, nw = result_jpg_image.shape[:2] # 旋转后的新的长宽
clockwise = (
-1 if rotation < 0 else 1
) # clockwise 代表时针,即 1 为顺时针,-1 为逆时针
# 如果逆时针偏离:
if rotation < 0:
p1 = Coordinate(0, int(w * sin))
p2 = Coordinate(int(w * cos), 0)
p3 = Coordinate(nw, int(h * cos))
p4 = Coordinate(int(h * sin), nh)
L1 = LinearFunction_TwoDots(p1, p4)
L2 = LinearFunction_TwoDots(p4, p3)
dotL3 = Coordinate(
int(0.25 * p2.x + 0.75 * p3.x), int(0.25 * p2.y + 0.75 * p3.y)
)
# 如果顺时针偏离:
else:
p1 = Coordinate(int(h * sin), 0)
p2 = Coordinate(nw, int(w * sin))
p3 = Coordinate(int(w * cos), nh)
p4 = Coordinate(0, int(h * cos))
L1 = LinearFunction_TwoDots(p4, p3)
L2 = LinearFunction_TwoDots(p3, p2)
dotL3 = Coordinate(
int(0.75 * p4.x + 0.25 * p1.x), int(0.75 * p4.y + 0.25 * p1.y)
)
# Step4. 根据附带信息进行图像绘制(4 个旋转点),便于 DEBUG 模式验证
drawed_dots_image = draw_picture_dots(
result_jpg_image,
[(p1.x, p1.y), (p2.x, p2.y), (p3.x, p3.y), (p4.x, p4.y), (dotL3.x, dotL3.y)],
)
if IS_DEBUG:
testImages.append(["drawed_dots_image", drawed_dots_image])
return (
result_jpg_image,
result_png_image,
L1,
L2,
dotL3,
clockwise,
drawed_dots_image,
)
@calTime
def face_number_detection_mtcnn(input_image):
"""
本函数的功能是对旋转矫正的结果图进行基于 MTCNN 模型的人脸检测。
Args:
- input_image: numpy.array(3 channels), 旋转矫正 (rotation_adjust) 的 3 通道结果图
Returns:
- faces: list, 人脸检测的结果,包含人脸位置信息
"""
# 如果图像的长或宽>1500px,则对图像进行 1/2 的 resize 再做 MTCNN 人脸检测,以加快处理速度
if max(input_image.shape[0], input_image.shape[1]) >= 1500:
input_image_resize = cv2.resize(
input_image,
(input_image.shape[1] // 2, input_image.shape[0] // 2),
interpolation=cv2.INTER_AREA,
)
faces, _ = face_detect_mtcnn(input_image_resize, filter=True) # MTCNN 人脸检测
# 如果缩放后图像的 MTCNN 人脸数目检测结果等于 1->两次人脸检测结果没有偏差,则对定位数据 x2
if len(faces) == 1:
for item, param in enumerate(faces[0]):
faces[0][item] = param * 2
# 如果两次人脸检测结果有偏差,则默认缩放后图像的 MTCNN 检测存在误差,则将原图输入再做一次 MTCNN(保险措施)
else:
faces, _ = face_detect_mtcnn(input_image, filter=True)
# 如果图像的长或宽<1500px,则直接进行 MTCNN 检测
else:
faces, _ = face_detect_mtcnn(input_image, filter=True)
return faces
@calTime
def cutting_rect_pan(
x1, y1, x2, y2, width, height, L1, L2, L3, clockwise, standard_size
):
"""
本函数的功能是对旋转矫正结果图的裁剪框进行修正 ———— 解决"旋转三角形"现象。
Args:
- x1: int, 裁剪框左上角的横坐标
- y1: int, 裁剪框左上角的纵坐标
- x2: int, 裁剪框右下角的横坐标
- y2: int, 裁剪框右下角的纵坐标
- width: int, 待裁剪图的宽度
- height:int, 待裁剪图的高度
- L1: CLassObject, 根据旋转点连线所构造函数
- L2: CLassObject, 根据旋转点连线所构造函数
- L3: ClassObject, 一个特殊裁切点的坐标
- clockwise: int, 旋转时针状态
- standard_size: tuple, 标准照的尺寸
Returns:
- x1: int, 新的裁剪框左上角的横坐标
- y1: int, 新的裁剪框左上角的纵坐标
- x2: int, 新的裁剪框右下角的横坐标
- y2: int, 新的裁剪框右下角的纵坐标
- x_bias: int, 裁剪框横坐标方向上的计算偏置量
- y_bias: int, 裁剪框纵坐标方向上的计算偏置量
"""
# 用于计算的裁剪框坐标 x1_cal,x2_cal,y1_cal,y2_cal(如果裁剪框超出了图像范围,则缩小直至在范围内)
x1_std = x1 if x1 > 0 else 0
x2_std = x2 if x2 < width else width
# y1_std = y1 if y1 > 0 else 0
y2_std = y2 if y2 < height else height
# 初始化 x 和 y 的计算偏置项 x_bias 和 y_bias
x_bias = 0
y_bias = 0
# 如果顺时针偏转
if clockwise == 1:
if y2 > L1.forward_x(x1_std):
y_bias = int(-(y2_std - L1.forward_x(x1_std)))
if y2 > L2.forward_x(x2_std):
x_bias = int(-(x2_std - L2.forward_y(y2_std)))
x2 = x2_std + x_bias
if x1 < L3.x:
x1 = L3.x
# 如果逆时针偏转
else:
if y2 > L1.forward_x(x1_std):
x_bias = int(L1.forward_y(y2_std) - x1_std)
if y2 > L2.forward_x(x2_std):
y_bias = int(-(y2_std - L2.forward_x(x2_std)))
x1 = x1_std + x_bias
if x2 > L3.x:
x2 = L3.x
# 计算裁剪框的 y 的变化
y2 = int(y2_std + y_bias)
new_cut_width = x2 - x1
new_cut_height = int(new_cut_width / standard_size[1] * standard_size[0])
y1 = y2 - new_cut_height
return x1, y1, x2, y2, x_bias, y_bias
@calTime
def idphoto_cutting(
faces,
head_measure_ratio,
standard_size,
head_height_ratio,
origin_png_image,
origin_png_image_pre,
rotation_params,
align=False,
IS_DEBUG=False,
top_distance_max=0.12,
top_distance_min=0.10,
):
"""
本函数的功能为进行证件照的自适应裁剪,自适应依据 Setting.json 的控制参数,以及输入图像的自身情况。
Args:
- faces: list, 人脸位置信息
- head_measure_ratio: float, 人脸面积与全图面积的期望比值
- standard_size: tuple, 标准照尺寸,如 (413, 295)
- head_height_ratio: float, 人脸中心处在全图高度的比例期望值
- origin_png_image: numpy.array(4 channels), 经过一系列转换后的用户输入图
- origin_png_image_pre:numpy.array(4 channels),经过一系列转换(但没有做旋转矫正)的用户输入图
- rotation_params:旋转参数字典
- L1: classObject, 来自 rotation_ajust 的 L1 线性函数
- L2: classObject, 来自 rotation_ajust 的 L2 线性函数
- L3: classObject, 来自 rotation_ajust 的 dotL3 点
- clockwise: int, (顺/逆) 时针偏差
- drawed_image: numpy.array, 红点标定 4 个旋转点的图像
- align: bool, 是否图像做过旋转矫正
- IS_DEBUG: DEBUG 模式开关
- top_distance_max: float, 头距离顶部的最大比例
- top_distance_min: float, 头距离顶部的最小比例
Returns:
- result_image_hd: numpy.array(4 channels), 高清照
- result_image_standard: numpy.array(4 channels), 标准照
- clothing_params: json, 换装配置参数,便于后续换装功能的使用
"""
# Step0. 旋转参数准备
L1 = rotation_params["L1"]
L2 = rotation_params["L2"]
L3 = rotation_params["L3"]
clockwise = rotation_params["clockwise"]
drawed_image = rotation_params["drawed_image"]
# Step1. 准备人脸参数
face_rect = faces[0]
x, y = face_rect[0], face_rect[1]
w, h = face_rect[2] - x + 1, face_rect[3] - y + 1
height, width = origin_png_image.shape[:2]
width_height_ratio = standard_size[0] / standard_size[1] # 高宽比
# Step2. 计算高级参数
face_center = (x + w / 2, y + h / 2) # 面部中心坐标
face_measure = w * h # 面部面积
crop_measure = face_measure / head_measure_ratio # 裁剪框面积:为面部面积的 5 倍
resize_ratio = crop_measure / (standard_size[0] * standard_size[1]) # 裁剪框缩放率
resize_ratio_single = math.sqrt(
resize_ratio
) # 长和宽的缩放率(resize_ratio 的开方)
crop_size = (
int(standard_size[0] * resize_ratio_single),
int(standard_size[1] * resize_ratio_single),
) # 裁剪框大小
# 裁剪框的定位信息
x1 = int(face_center[0] - crop_size[1] / 2)
y1 = int(face_center[1] - crop_size[0] * head_height_ratio)
y2 = y1 + crop_size[0]
x2 = x1 + crop_size[1]
# Step3. 对于旋转矫正图片的裁切处理
# if align:
# y_top_pre, _, _, _ = get_box_pro(origin_png_image.astype(np.uint8), model=2,
# correction_factor=0) # 获取 matting 结果图的顶距
# # 裁剪参数重新计算,目标是以最小的图像损失来消除"旋转三角形"
# x1, y1, x2, y2, x_bias, y_bias = cutting_rect_pan(x1, y1, x2, y2, width, height, L1, L2, L3, clockwise,
# standard_size)
# # 这里设定一个拒绝判定条件,如果裁剪框切进了人脸检测框的话,就不进行旋转
# if y1 > y_top_pre:
# y2 = y2 - (y1 - y_top_pre)
# y1 = y_top_pre
# # 如何遇到裁剪到人脸的情况,则转为不旋转裁切
# if x1 > x or x2 < (x + w) or y1 > y or y2 < (y + h):
# return idphoto_cutting(faces, head_measure_ratio, standard_size, head_height_ratio, origin_png_image_pre,
# origin_png_image_pre, rotation_params, align=False, IS_DEBUG=False)
#
# if y_bias != 0:
# origin_png_image = origin_png_image[:y2, :]
# if x_bias > 0: # 逆时针
# origin_png_image = origin_png_image[:, x1:]
# if drawed_image is not None and IS_DEBUG:
# drawed_x = x1
# x = x - x1
# x2 = x2 - x1
# x1 = 0
# else: # 顺时针
# origin_png_image = origin_png_image[:, :x2]
#
# if drawed_image is not None and IS_DEBUG:
# drawed_x = drawed_x if x_bias > 0 else 0
# drawed_image = draw_picture_dots(drawed_image, [(x1 + drawed_x, y1), (x1 + drawed_x, y2),
# (x2 + drawed_x, y1), (x2 + drawed_x, y2)],
# pen_color=(255, 0, 0))
# testImages.append(["drawed_image", drawed_image])
# Step4. 对照片的第一轮裁剪
cut_image = IDphotos_cut(x1, y1, x2, y2, origin_png_image)
cut_image = cv2.resize(cut_image, (crop_size[1], crop_size[0]))
y_top, y_bottom, x_left, x_right = get_box_pro(
cut_image.astype(np.uint8), model=2, correction_factor=0
) # 得到 cut_image 中人像的上下左右距离信息
if IS_DEBUG:
testImages.append(["firstCut", cut_image])
# Step5. 判定 cut_image 中的人像是否处于合理的位置,若不合理,则处理数据以便之后调整位置
# 检测人像与裁剪框左边或右边是否存在空隙
if x_left > 0 or x_right > 0:
status_left_right = 1
cut_value_top = int(
((x_left + x_right) * width_height_ratio) / 2
) # 减去左右,为了保持比例,上下也要相应减少 cut_value_top
else:
status_left_right = 0
cut_value_top = 0
"""
检测人头顶与照片的顶部是否在合适的距离内:
- status==0: 距离合适,无需移动
- status=1: 距离过大,人像应向上移动
- status=2: 距离过小,人像应向下移动
"""
status_top, move_value = detect_distance(
y_top - cut_value_top, crop_size[0], max=top_distance_max, min=top_distance_min
)
# Step6. 对照片的第二轮裁剪
if status_left_right == 0 and status_top == 0:
result_image = cut_image
else:
result_image = IDphotos_cut(
x1 + x_left,
y1 + cut_value_top + status_top * move_value,
x2 - x_right,
y2 - cut_value_top + status_top * move_value,
origin_png_image,
)
if IS_DEBUG:
testImages.append(["result_image_pre", result_image])
# 换装参数准备
relative_x = x - (x1 + x_left)
relative_y = y - (y1 + cut_value_top + status_top * move_value)
# Step7. 当照片底部存在空隙时,下拉至底部
result_image, y_high = move(result_image.astype(np.uint8))
relative_y = relative_y + y_high # 更新换装参数
# cv2.imwrite("./temp_image.png", result_image)
# Step8. 标准照与高清照转换
result_image_standard = standard_photo_resize(result_image, standard_size)
result_image_hd, resize_ratio_max = resize_image_by_min(
result_image, esp=max(600, standard_size[1])
)
# Step9. 参数准备 - 为换装服务
clothing_params = {
"relative_x": relative_x * resize_ratio_max,
"relative_y": relative_y * resize_ratio_max,
"w": w * resize_ratio_max,
"h": h * resize_ratio_max,
}
return result_image_hd, result_image_standard, clothing_params
@calTime
def debug_mode_process(testImages):
for item, (text, imageItem) in enumerate(testImages):
channel = imageItem.shape[2]
(height, width) = imageItem.shape[:2]
if channel == 4:
imageItem = add_background(imageItem, bgr=(255, 255, 255))
imageItem = np.uint8(imageItem)
if item == 0:
testHeight = height
result_image_test = imageItem
result_image_test = cv2.putText(
result_image_test,
text,
(50, 50),
cv2.FONT_HERSHEY_COMPLEX,
1.0,
(200, 100, 100),
3,
)
else:
imageItem = cv2.resize(
imageItem, (int(width * testHeight / height), testHeight)
)
imageItem = cv2.putText(
imageItem,
text,
(50, 50),
cv2.FONT_HERSHEY_COMPLEX,
1.0,
(200, 100, 100),
3,
)
result_image_test = cv2.hconcat([result_image_test, imageItem])
if item == len(testImages) - 1:
return result_image_test
@calTime("主函数")
def IDphotos_create(
input_image,
mode="ID",
size=(413, 295),
head_measure_ratio=0.2,
head_height_ratio=0.45,
align=False,
beauty=True,
fd68=None,
human_sess=None,
IS_DEBUG=False,
top_distance_max=0.12,
top_distance_min=0.10,
):
"""
证件照制作主函数
Args:
input_image: 输入图像矩阵
size: (h, w)
head_measure_ratio: 头部占比?
head_height_ratio: 头部高度占比?
align: 是否进行人脸矫正(roll),默认为 True(是)
fd68: 人脸 68 关键点检测类,详情参见 hycv.FaceDetection68.faceDetection688
human_sess: 人像抠图模型类,由 onnx 载入(不与下面两个参数连用)连用)
oss_image_name: 阿里云 api 需要的参数,实际上是上传到 oss 的路径
user: 阿里云 api 的 accessKey 配置对象
top_distance_max: float, 头距离顶部的最大比例
top_distance_min: float, 头距离顶部的最小比例
Returns:
result_image(高清版), result_image(普清版), api 请求日志,
排版照参数 (list),排版照是否旋转参数,照片尺寸(x,y)
在函数不出错的情况下,函数会因为一些原因主动抛出异常:
1. 无人脸(或者只有半张,dlib 无法检测出来),抛出 IDError 异常,内部参数 face_num 为 0
2. 人脸数量超过 1,抛出 IDError 异常,内部参数 face_num 为 2
3. 抠图 api 请求失败,抛出 IDError 异常,内部参数 face_num 为 -1num 为 -1
"""
# Step0. 数据准备/图像预处理
matting_params = {"modnet": {"human_sess": human_sess}}
rotation_params = {
"L1": None,
"L2": None,
"L3": None,
"clockwise": None,
"drawed_image": None,
}
input_image = resize_image_esp(
input_image, 2000
) # 将输入图片 resize 到最大边长为 2000
# Step1. 人脸检测
# dets, rotation, landmark = face_number_and_angle_detection(input_image)
# dets = face_number_and_angle_detection(input_image)
# Step2. 美颜
# if beauty:
# input_image = makeBeautiful(input_image, landmark, 2, 2, 5, 4)
# Step3. 抠图
origin_png_image = image_matting(input_image, matting_params)
if mode == "只换底" or mode == "Only Change Background":
return origin_png_image, origin_png_image, None, None, None, None, None, None, 1
origin_png_image_pre = (
origin_png_image.copy()
) # 备份一下现在抠图结果图,之后在 iphoto_cutting 函数有用
# Step4. 旋转矫正
# 如果旋转角不大于 2, 则不做旋转
# if abs(rotation) <= 2:
# align = False
# # 否则,进行旋转矫正
# if align:
# input_image_candidate, origin_png_image_candidate, L1, L2, L3, clockwise, drawed_image \
# = rotation_ajust(input_image, rotation, cv2.split(origin_png_image)[-1], IS_DEBUG=IS_DEBUG) # 图像旋转
#
# origin_png_image_pre = origin_png_image.copy()
# input_image = input_image_candidate.copy()
# origin_png_image = origin_png_image_candidate.copy()
#
# rotation_params["L1"] = L1
# rotation_params["L2"] = L2
# rotation_params["L3"] = L3
# rotation_params["clockwise"] = clockwise
# rotation_params["drawed_image"] = drawed_image
# Step5. MTCNN 人脸检测
faces = face_number_detection_mtcnn(input_image)
# Step6. 证件照自适应裁剪
face_num = len(faces)
# 报错 MTCNN 检测结果不等于 1 的图片
if face_num != 1:
return None, None, None, None, None, None, None, None, 0
# 符合条件的进入下一环
else:
result_image_hd, result_image_standard, clothing_params = idphoto_cutting(
faces,
head_measure_ratio,
size,
head_height_ratio,
origin_png_image,
origin_png_image_pre,
rotation_params,
align=align,
IS_DEBUG=IS_DEBUG,
top_distance_max=top_distance_max,
top_distance_min=top_distance_min,
)
# Step7. 排版照参数获取
typography_arr, typography_rotate = generate_layout_photo(
input_height=size[0], input_width=size[1]
)
return (
result_image_hd,
result_image_standard,
typography_arr,
typography_rotate,
clothing_params["relative_x"],
clothing_params["relative_y"],
clothing_params["w"],
clothing_params["h"],
1,
)
if __name__ == "__main__":
HY_HUMAN_MATTING_WEIGHTS_PATH = "./hivision_modnet.onnx"
sess = onnxruntime.InferenceSession(HY_HUMAN_MATTING_WEIGHTS_PATH)
input_image = cv2.imread("test.jpg")
(
result_image_hd,
result_image_standard,
typography_arr,
typography_rotate,
_,
_,
_,
_,
_,
) = IDphotos_create(
input_image,
size=(413, 295),
head_measure_ratio=0.2,
head_height_ratio=0.45,
align=True,
beauty=True,
fd68=None,
human_sess=sess,
oss_image_name="test_tmping.jpg",
user=None,
IS_DEBUG=False,
top_distance_max=0.12,
top_distance_min=0.10,
)
cv2.imwrite("result_image_hd.png", result_image_hd)