Skip to content

yongfanbeta/awesome-multimodal-healthcare

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 

Repository files navigation

Reading List for Multimodal Learning in Healthcare

Table of Contents

Papers

Survey papers

  • Huang, S.-C., Pareek, A., Seyyedi, S., Banerjee, I. & Lungren, M. P. Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. npj Digit. Med. 3, 136 (2020). html
  • Behrad, F. & Saniee Abadeh, M. An overview of deep learning methods for multimodal medical data mining. Expert Systems with Applications 200, 117006 (2022). html

EHR + images

  • Khader, F. et al. Multimodal Deep Learning for Integrating Chest Radiographs and  Clinical Parameters: A Case for Transformers. Radiology 309, e230806 (2023).html
  • Barros, V. et al. Virtual Biopsy by Using Artificial Intelligence-based Multimodal Modeling of Binational Mammography Data. Radiology 220027 (2022) pdf
  • Qiu, S. et al. Multimodal deep learning for Alzheimer’s disease dementia assessment. Nature Communications 17 (2022). pdf
  • Xu, M. et al. Accurately Differentiating Between Patients With COVID-19, Patients With Other Viral Infections, and Healthy Individuals: Multimodal Late Fusion Learning Approach. J Med Internet Res 23, e25535 (2021). pdf
  • Mei, X. et al. Artificial intelligence–enabled rapid diagnosis of patients with COVID-19. Nat Med 26, 1224–1228 (2020).html

EHR + notes

  • Silva, J. F. & Matos, S. Modelling patient trajectories using multimodal information. J Biomed Inform 134, 104195 (2022).html
  • Liu, S. et al. Multimodal Data Matters: Language Model Pre-Training Over Structured and Unstructured Electronic Health Records. IEEE J Biomed Health Inform PP, (2022).pdf
  • Darabi, S., Kachuee, M., Fazeli, S. & Sarrafzadeh, M. TAPER: Time-aware patient EHR representation. IEEE Journal of Biomedical and Health Informatics 24, 3268–3275 (2020).pdf

EHR + signals

  • Sundrani, S. et al. Predicting patient decompensation from continuous physiologic monitoring in the emergency department. Npj Digit Med 6, 1–10 (2023).html
  • Kim, H. B. et al. Computational signatures for post-cardiac arrest trajectory prediction: Importance of early physiological time series. Anaesth Crit Care Pa 41, 101015 (2022).html
  • Chen, H., Lundberg, S. M., Erion, G., Kim, J. H. & Lee, S.-I. Forecasting adverse surgical events using self-supervised transfer learning for physiological signals. npj Digit. Med. 4, 1–13 (2021).html
  • Feng, Y. et al. DCMN: Double Core Memory Network for Patient Outcome Prediction with Multimodal Data. IEEE International Conference on Data Mining (ICDM) 10 (2019).html
  • Xu, Y., Biswal, S., Deshpande, S. R., Maher, K. O. & Sun, J. RAIM: Recurrent Attentive and Intensive Model of Multimodal Patient Monitoring Data. in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining 2565–2573 (ACM, 2018).html

More than two

  • Soenksen, L. R. et al. Integrated multimodal artificial intelligence framework for healthcare applications. npj Digit. Med. 5, 149 (2022).html
  • Boehm, K. M. Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer. Nature Cancer 3, 24 (2022).html
  • Golovanevsky, M., Eickhoff, C. & Singh, R. Multimodal attention-based deep learning for Alzheimer’s disease diagnosis. J Am Med Inform Assn ocac168 (2022) pdf

Framework

Tutorials

Courses

Workshops

Labs

About

Reading list for multimodal learning in healthcare

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published