-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodel.py
155 lines (119 loc) · 5.27 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import torch
import torch.nn as nn
import torch.nn.functional as F
class ResBlock(nn.Module):
def __init__(self, dim, kernel_size=3):
super(ResBlock, self).__init__()
self.conv1 = nn.Conv2d(dim, dim, kernel_size, 1, kernel_size//2)
self.conv2 = nn.Conv2d(dim, dim, kernel_size, 1, kernel_size//2)
self.instance = nn.InstanceNorm2d(dim, track_running_stats=False, affine=False)
def forward(self, x):
x1 = F.relu(self.instance(self.conv1(x)))
x = F.relu(self.instance(self.conv2(x1))+x)
return x
class LRBLock_3(nn.Module):
def __init__(self, dim, kernel_size=3):
super(LRBLock_3, self).__init__()
self.res_l3 = ResBlock(dim, kernel_size)
self.res_l2 = ResBlock(dim, kernel_size)
self.res_l1 = ResBlock(dim, kernel_size)
def sample(self, x, scale_factor=2):
return F.interpolate(x, scale_factor=scale_factor, mode='bilinear', align_corners=False, recompute_scale_factor=True)
def forward(self, x):
x_down2 = self.sample(x, 0.5) #128
x_down4 = self.sample(x_down2, 0.5) #64
laplace2 = x_down2 - self.sample(x_down4, 2)
laplace1 = x - self.sample(x_down2, 2)
scale1 = self.res_l1(x_down4)
scale2 = self.res_l2(laplace2)
scale3 = self.res_l3(laplace1)
output1 = scale1
output2 = self.sample(scale1, 2) + scale2
output3 = self.sample(output2, 2) + scale3
return output3
class LRBLock_2(nn.Module):
def __init__(self, dim, kernel_size=3):
super(LRBLock_2, self).__init__()
self.res_l2 = ResBlock(dim, kernel_size)
self.res_l1 = ResBlock(dim, kernel_size)
def sample(self, x, scale_factor=2):
return F.interpolate(x, scale_factor=scale_factor, mode='bilinear', align_corners=False, recompute_scale_factor=True)
def forward(self, x):
x_down2 = self.sample(x, 0.5) #128
laplace1 = x - self.sample(x_down2, 2)
scale1 = self.res_l1(x_down2)
scale2 = self.res_l2(laplace1)
output2 = self.sample(scale1, 2) + scale2
return output2
class LMSB_Block(nn.Module):
def __init__(self, in_dim, out_dim, kernel_size, stride, padding, lr_block, lr_block_kernel_size=3, up_block=False, last_block=False):
super(LMSB_Block, self).__init__()
if not up_block:
self.model = nn.Sequential(*[
nn.Conv2d(in_dim, out_dim, kernel_size, stride, padding),
nn.InstanceNorm2d(out_dim, track_running_stats=False, affine=False),
nn.ReLU(inplace=True),
lr_block(out_dim, lr_block_kernel_size)
])
else:
if last_block:
self.model = nn.Sequential(*[
lr_block(in_dim, lr_block_kernel_size),
nn.ConvTranspose2d(in_dim, out_dim, kernel_size, stride, padding),
])
else:
self.model = nn.Sequential(*[
lr_block(in_dim, 3),
nn.ConvTranspose2d(in_dim, out_dim, kernel_size, stride, padding),
nn.InstanceNorm2d(out_dim, track_running_stats=False, affine=False),
nn.ReLU(inplace=True),
])
def forward(self, x):
return self.model(x)
class LMSB(nn.Module):
def __init__(self, dim=64, lr_block=LRBLock_3):
super(LMSB, self).__init__()
self.lmsb_block_d1 = LMSB_Block(3, dim * 1, 5, 2, 2, lr_block)
self.lmsb_block_d2 = LMSB_Block(dim * 1, dim * 2, 5, 2, 2, lr_block)
self.lmsb_block_d3 = LMSB_Block(dim * 2, dim * 4, 5, 2, 2, lr_block)
self.lmsb_block_u1 = LMSB_Block(dim * 4, dim * 2, 4, 2, 1, lr_block, 3, True)
self.lmsb_block_u2 = LMSB_Block(dim * 2, dim * 1, 4, 2, 1, lr_block, 3, True)
self.lmsb_block_u3 = LMSB_Block(dim * 1, 3, 4, 2, 1, lr_block, 3, True, True)
def forward(self, x):
input_x = x
x1 = self.lmsb_block_d1(x)
x2 = self.lmsb_block_d2(x1)
x3 = self.lmsb_block_d3(x2)
x = self.lmsb_block_u1(x3)
x = self.lmsb_block_u2(x+x2)
x = self.lmsb_block_u3(x+x1)
return x + input_x
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.stage1 = LMSB(64, LRBLock_3)
self.stage2 = LMSB(32, LRBLock_2)
self.stage3 = LMSB(32, LRBLock_2)
def sample(self, x, scale_factor=2):
return F.interpolate(x, scale_factor=scale_factor, mode='bilinear', align_corners=False, recompute_scale_factor=True)
def forward(self, x):
x_down2 = self.sample(x, 0.5) #128
x_down4 = self.sample(x_down2, 0.5) #64
### Stage 1
scale1 = self.stage1(x_down4)
### Stage 2
laplace2 = x_down2 - self.sample(x_down4, 2)
scale2 = self.stage2(laplace2)
output2 = self.sample(scale1, 2) + scale2
### Stage 3
laplace1 = x - self.sample(x_down2, 2)
scale3 = self.stage3(laplace1)
output3 = self.sample(output2, 2) + scale3
return output3
def load_weight(self, weight_path):
self.load_state_dict(torch.load(weight_path))
if __name__ == '__main__':
model = Model()
x = torch.randn(1, 3, 256, 256)
y = model(x)
print(y.shape)