-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
101 lines (83 loc) · 3.71 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision import transforms
from pytorch_lightning import LightningModule, LightningDataModule, Trainer
from pytorch_lightning.plugins import DDPPlugin
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor
from utils.model import MBLLEN
from utils.dataset import MBLLENData
from utils.loss import Loss
class Model(LightningModule):
def __init__(self, model_cfg):
super(Model, self).__init__()
em_channel = model_cfg['em_channel']
fem_channel = model_cfg['fem_channel']
block_num = model_cfg['block_num']
self.model = MBLLEN(em_channel, fem_channel, block_num)
self.compute_loss = Loss(self.log)
def forward(self, x):
return self.model(x)
def training_step(self, batch, batch_idx):
input, label = batch
pred = self(input)
loss = self.compute_loss(pred, label, 'train')
self.log("train_loss", loss)
return loss
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=2e-3)
lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, 0.99)
return {"optimizer": optimizer, "lr_scheduler": lr_scheduler}
def validation_step(self, batch, batch_idx):
input, label = batch
pred = self(input)
loss = self.compute_loss(pred, label, 'val')
self.log("val_loss", loss)
def on_epoch_end(self):
pass
class Data(LightningDataModule):
def __init__(self, data_cfg):
super().__init__()
self.data_dir = data_cfg['data_dir']
self.batch_size = data_cfg['batch_size']
self.num_workers = data_cfg['num_workers']
self.dark_or_low = data_cfg['dark_or_low']
self.transform = transforms.Compose([transforms.ToTensor()])
def prepare_data(self):
pass
def setup(self, stage=None):
self.train_dataset = MBLLENData(self.data_dir,
mode1='train',
mode2=self.dark_or_low,
transform=self.transform)
self.val_dataset = MBLLENData(self.data_dir,
mode1='test',
mode2=self.dark_or_low,
transform=self.transform)
self.test_dataset = MBLLENData(self.data_dir,
mode1='test',
mode2=self.dark_or_low,
transform=self.transform)
def train_dataloader(self):
return DataLoader(
self.train_dataset,
batch_size=self.batch_size,
num_workers=self.num_workers,
persistent_workers=True,
)
def val_dataloader(self):
return DataLoader(self.val_dataset, batch_size=self.batch_size, num_workers=self.num_workers, persistent_workers=True)
def test_dataloader(self):
return DataLoader(self.test_dataset, batch_size=self.batch_size, num_workers=self.num_workers, persistent_workers=True)
if __name__ == '__main__':
from config import cfg
model = Model(cfg['model'])
data = Data(cfg['data'])
trainer = Trainer(gpus=cfg['trainer']['gpus'],
max_epochs=cfg['trainer']['max_epochs'],
accelerator='ddp',
precision=cfg['trainer']['precision'],
progress_bar_refresh_rate=1,
plugins=DDPPlugin(find_unused_parameters=False),
callbacks=[ModelCheckpoint(monitor=cfg['trainer']['monitor']), LearningRateMonitor(logging_interval='step')])
trainer.fit(model, data)