forked from jump-dev/JuMP.jl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnonlinear.jl
398 lines (355 loc) · 14.6 KB
/
nonlinear.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
# Copyright 2015, Iain Dunning, Joey Huchette, Miles Lubin, and contributors
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
#############################################################################
# JuMP
# An algebraic modelling langauge for Julia
# See http://github.com/JuliaOpt/JuMP.jl
#############################################################################
# test/nonlinear.jl
# Test general nonlinear
# Must be run as part of runtests.jl, as it needs a list of solvers.
#############################################################################
using JuMP, FactCheck
facts("[nonlinear] Test HS071 solves correctly") do
for nlp_solver in nlp_solvers
context("With solver $(typeof(nlp_solver))") do
# hs071
# Polynomial objective and constraints
# min x1 * x4 * (x1 + x2 + x3) + x3
# st x1 * x2 * x3 * x4 >= 25
# x1^2 + x2^2 + x3^2 + x4^2 = 40
# 1 <= x1, x2, x3, x4 <= 5
# Start at (1,5,5,1)
# End at (1.000..., 4.743..., 3.821..., 1.379...)
m = Model(solver=nlp_solver)
initval = [1,5,5,1]
@defVar(m, 1 <= x[i=1:4] <= 5, start=initval[i])
@setNLObjective(m, Min, x[1]*x[4]*(x[1]+x[2]+x[3]) + x[3])
@addNLConstraint(m, x[1]*x[2]*x[3]*x[4] >= 25)
@addNLConstraint(m, sum{x[i]^2,i=1:4} == 40)
@fact MathProgBase.numconstr(m) => 2
status = solve(m)
@fact status => :Optimal
@fact getValue(x)[:] => roughly(
[1.000000, 4.742999, 3.821150, 1.379408], 1e-5)
end; end; end
facts("[nonlinear] Test HS071 solves correctly, epigraph") do
for nlp_solver in nlp_solvers
context("With solver $(typeof(nlp_solver))") do
# hs071, with epigraph formulation
# Linear objective, nonlinear constraints
# min t
# st t >= x1 * x4 * (x1 + x2 + x3) + x3
# ...
m = Model(solver=nlp_solver)
start = [1.0, 5.0, 5.0, 1.0]
@defVar(m, 1 <= x[i=1:4] <= 5, start = start[i])
@defVar(m, t, start = 100)
@setObjective(m, Min, t)
@addNLConstraint(m, t >= x[1]*x[4]*(x[1]+x[2]+x[3]) + x[3])
@addNLConstraint(m, x[1]*x[2]*x[3]*x[4] >= 25)
@addNLConstraint(m, sum{x[i]^2,i=1:4} == 40)
status = solve(m)
@fact status => :Optimal
@fact getValue(x)[:] => roughly(
[1.000000, 4.742999, 3.821150, 1.379408], 1e-5)
end; end; end
facts("[nonlinear] Test ifelse") do
for nlp_solver in nlp_solvers
(contains("$(typeof(nlp_solver))", "OsilSolver") || contains("$(typeof(nlp_solver))", "NLoptSolver")) && continue
context("With solver $(typeof(nlp_solver))") do
m = Model(solver=nlp_solver)
@defVar(m, x, start = 2)
# minimizer at smooth point, solvers should be okay
@setNLObjective(m, Min, ifelse( x <= 1, x^2, x) )
status = solve(m)
@fact status => :Optimal
@fact getValue(x) => roughly(0.0, 1e-5)
end; end; end
facts("[nonlinear] Accepting fixed variables") do
for nlp_solver in convex_nlp_solvers
context("With solver $(typeof(nlp_solver))") do
m = Model(solver=nlp_solver)
@defVar(m, x == 0)
@defVar(m, y ≥ 0)
@setObjective(m, Min, y)
@addNLConstraint(m, y ≥ x^2)
for α in 1:4
setValue(x, α)
solve(m)
@fact getValue(y) => roughly(α^2, 1e-6)
end
end; end; end
facts("[nonlinear] Test QP solve through NL pathway") do
for nlp_solver in convex_nlp_solvers
context("With solver $(typeof(nlp_solver))") do
# Solve a problem with quadratic objective with linear
# constraints, but force it to use the nonlinear code.
m = Model(solver=nlp_solver)
@defVar(m, 0.5 <= x <= 2)
@defVar(m, 0.0 <= y <= 30)
@setObjective(m, Min, (x+y)^2)
param = [1.0]
@addNLConstraint(m, x + y >= param[1])
status = solve(m)
@fact status => :Optimal
@fact m.objVal => roughly(1.0, 1e-6)
@fact getValue(x)+getValue(y) => roughly(1.0, 1e-6)
# sneaky problem modification
param[1] = 10
@fact m.internalModelLoaded => true
status = solve(m)
@fact m.objVal => roughly(10.0^2, 1e-6)
@fact getValue(x)+getValue(y) => roughly(10.0, 1e-6)
end; end; end
facts("[nonlinear] Test quad con solve through NL pathway") do
for nlp_solver in convex_nlp_solvers
context("With solver $(typeof(nlp_solver))") do
# Solve a problem with linear objective with quadratic
# constraints, but force it to use the nonlinear code.
m = Model(solver=nlp_solver)
@defVar(m, -2 <= x <= 2)
@defVar(m, -2 <= y <= 2)
@setNLObjective(m, Min, x - y)
@addConstraint(m, x + x^2 + x*y + y^2 <= 1)
status = solve(m)
@fact status => :Optimal
@fact getObjectiveValue(m) => roughly(-1-4/sqrt(3), 1e-6)
@fact getValue(x) + getValue(y) => roughly(-1/3, 1e-3)
end; end; end
facts("[nonlinear] Test two-sided nonlinear constraints") do
for nlp_solver in convex_nlp_solvers
context("With solver $(typeof(nlp_solver))") do
m = Model(solver=nlp_solver)
@defVar(m, x)
@setNLObjective(m, Max, x)
l = -1
u = 1
@addNLConstraint(m, l <= x <= u)
status = solve(m)
@fact status => :Optimal
@fact getObjectiveValue(m) => roughly(u, 1e-6)
@setNLObjective(m, Min, x)
status = solve(m)
@fact status => :Optimal
@fact getObjectiveValue(m) => roughly(l, 1e-6)
end; end; end
facts("[nonlinear] Test mixed integer nonlinear problems") do
for minlp_solver in minlp_solvers
context("With solver $(typeof(minlp_solver))") do
## Solve test problem 1 (Synthesis of processing system) in
# M. Duran & I.E. Grossmann, "An outer approximation algorithm for
# a class of mixed integer nonlinear programs", Mathematical
# Programming 36, pp. 307-339, 1986. The problem also appears as
# problem synthes1 in the MacMINLP test set.
m = Model(solver=minlp_solver)
x_U = [2,2,1]
@defVar(m, x_U[i] >= x[i=1:3] >= 0)
@defVar(m, y[4:6], Bin)
@setNLObjective(m, Min, 10 + 10*x[1] - 7*x[3] + 5*y[4] + 6*y[5] + 8*y[6] - 18*log(x[2]+1) - 19.2*log(x[1]-x[2]+1))
@addNLConstraints(m, begin
0.8*log(x[2] + 1) + 0.96*log(x[1] - x[2] + 1) - 0.8*x[3] >= 0
log(x[2] + 1) + 1.2*log(x[1] - x[2] + 1) - x[3] - 2*y[6] >= -2
x[2] - x[1] <= 0
x[2] - 2*y[4] <= 0
x[1] - x[2] - 2*y[5] <= 0
y[4] + y[5] <= 1
end)
status = solve(m)
@fact status => :Optimal
@fact getObjectiveValue(m) => roughly(6.00976, 1e-5)
@fact getValue(x)[:] => roughly([1.30098, 0.0, 1.0], 1e-5)
@fact getValue(y)[:] => roughly([0.0, 1.0, 0.0], 1e-5)
end; end; end
facts("[nonlinear] Test continuous relaxation of minlp test problem") do
for nlp_solver in nlp_solvers
context("With solver $(typeof(nlp_solver))") do
## Solve continuous relaxation of test problem 1 (Synthesis of processing system) in
# M. Duran & I.E. Grossmann, "An outer approximation algorithm for
# a class of mixed integer nonlinear programs", Mathematical
# Programming 36, pp. 307-339, 1986. The problem also appears as
# problem synthes1 in the MacMINLP test set.
# Introduce auxiliary nonnegative variable for the x[1]-x[2]+1 term
m = Model(solver=nlp_solver)
x_U = [2,2,1]
@defVar(m, x_U[i] >= x[i=1:3] >= 0)
@defVar(m, 1 >= y[4:6] >= 0)
@defVar(m, z >= 0, start=1)
@setNLObjective(m, Min, 10 + 10*x[1] - 7*x[3] + 5*y[4] + 6*y[5] + 8*y[6] - 18*log(x[2]+1) - 19.2*log(z))
@addNLConstraints(m, begin
0.8*log(x[2] + 1) + 0.96*log(z) - 0.8*x[3] >= 0
log(x[2] + 1) + 1.2*log(z) - x[3] - 2*y[6] >= -2
x[2] - x[1] <= 0
x[2] - 2*y[4] <= 0
x[1] - x[2] - 2*y[5] <= 0
y[4] + y[5] <= 1
x[1] - x[2] + 1 == z
end)
status = solve(m)
@fact status => :Optimal
@fact getObjectiveValue(m) => roughly(0.7593, 5e-5)
@fact getValue(x)[:] => roughly([1.1465, 0.54645, 1.0], 2e-4)
@fact getValue(y)[:] => roughly([0.2732, 0.3, 0.0], 2e-4)
@fact getValue(z) => roughly(1.6, 2e-4)
end; end; end
facts("[nonlinear] Test maximization objective") do
for nlp_solver in convex_nlp_solvers
context("With solver $(typeof(nlp_solver))") do
# Solve a simple problem with a maximization objective
m = Model(solver=nlp_solver)
@defVar(m, -2 <= x <= 2); setValue(x, -1.8)
@defVar(m, -2 <= y <= 2); setValue(y, 1.5)
@setNLObjective(m, Max, y - x)
@addConstraint(m, x + x^2 + x*y + y^2 <= 1)
@fact solve(m) => :Optimal
@fact getObjectiveValue(m) => roughly(1+4/sqrt(3), 1e-6)
@fact getValue(x) + getValue(y) => roughly(-1/3, 1e-3)
end; end; end
facts("[nonlinear] Test maximization objective (embedded expressions)") do
for nlp_solver in convex_nlp_solvers
context("With solver $(typeof(nlp_solver))") do
m = Model(solver=nlp_solver)
@defVar(m, -2 <= x <= 2); setValue(x, -1.8)
@defVar(m, -2 <= y <= 2); setValue(y, 1.5)
@setNLObjective(m, Max, y - x)
@defNLExpr(quadexpr, x + x^2 + x*y + y^2)
@addNLConstraint(m, quadexpr <= 1)
@fact solve(m) => :Optimal
@fact getObjectiveValue(m) => roughly(1+4/sqrt(3), 1e-6)
@fact getValue(x) + getValue(y) => roughly(-1/3, 1e-3)
@fact getValue(quadexpr) => roughly(1, 1e-5)
end; end; end
facts("[nonlinear] Test infeasibility detection") do
for nlp_solver in convex_nlp_solvers
contains(string(typeof(nlp_solver)),"NLoptSolver") && continue
context("With solver $(typeof(nlp_solver))") do
# (Attempt to) solve an infeasible problem
m = Model(solver=nlp_solver)
n = 10
@defVar(m, 0 <= x[i=1:n] <= 1)
@setNLObjective(m, Max, x[n])
for i in 1:n-1
@addNLConstraint(m, x[i+1]-x[i] == 0.15)
end
@fact solve(m, suppress_warnings=true) => :Infeasible
end; end; end
facts("[nonlinear] Test unboundedness detection") do
for nlp_solver in convex_nlp_solvers
contains(string(typeof(nlp_solver)),"NLoptSolver") && continue
context("With solver $(typeof(nlp_solver))") do
# (Attempt to) solve an unbounded problem
m = Model(solver=nlp_solver)
@defVar(m, x >= 0)
@setNLObjective(m, Max, x)
@addNLConstraint(m, x >= 5)
@fact solve(m, suppress_warnings=true) => :Unbounded
end; end; end
facts("[nonlinear] Test entropy maximization") do
for nlp_solver in convex_nlp_solvers
context("With solver $(typeof(nlp_solver))") do
m = Model(solver=nlp_solver)
N = 3
@defVar(m, x[1:N] >= 0, start = 1)
@defNLExpr(entropy[i=1:N], -x[i]*log(x[i]))
@setNLObjective(m, Max, sum{entropy[i], i = 1:N})
@addConstraint(m, sum(x) == 1)
@fact solve(m) => :Optimal
@fact norm(getValue(x)[:] - [1/3,1/3,1/3]) => roughly(0.0, 1e-4)
end; end; end
facts("[nonlinear] Test entropy maximization (reformulation)") do
for nlp_solver in convex_nlp_solvers
context("With solver $(typeof(nlp_solver))") do
m = Model(solver=nlp_solver)
idx = [1,2,3,4]
@defVar(m, x[idx] >= 0, start = 1)
@defVar(m, z[1:4], start = 0)
@defNLExpr(entropy[i=idx], -x[i]*log(x[i]))
@setNLObjective(m, Max, sum{z[i], i = 1:2} + sum{z[i]/2, i=3:4})
@addNLConstraint(m, z_constr1[i=1], z[i] <= entropy[i])
@addNLConstraint(m, z_constr1[i=2], z[i] <= entropy[i]) # duplicate expressions
@addNLConstraint(m, z_constr2[i=3:4], z[i] <= 2*entropy[i])
@addConstraint(m, sum(x) == 1)
@fact solve(m) => :Optimal
@fact norm([getValue(x[i]) for i in idx] - [1/4,1/4,1/4,1/4]) => roughly(0.0, 1e-4)
@fact getValue(entropy[1]) => roughly(-(1/4)*log(1/4), 1e-4)
@defNLExpr(zexpr[i=1:4], z[i])
@fact getValue(zexpr[1]) => roughly(-(1/4)*log(1/4), 1e-4)
end; end; end
#############################################################################
# Test that output is produced in correct MPB form
type DummyNLPSolver <: MathProgBase.AbstractMathProgSolver
end
type DummyNLPModel <: MathProgBase.AbstractMathProgModel
end
MathProgBase.model(s::DummyNLPSolver) = DummyNLPModel()
function MathProgBase.loadnonlinearproblem!(m::DummyNLPModel, numVar, numConstr, x_l, x_u, g_lb, g_ub, sense, d::MathProgBase.AbstractNLPEvaluator)
MathProgBase.initialize(d, [:ExprGraph])
objexpr = MathProgBase.obj_expr(d)
facts("[nonlinear] Test NL MPB interface ($objexpr)") do
@fact objexpr => anyof(:(x[1]^x[2]), :(-1.0*x[1]+1.0*x[2]))
@fact MathProgBase.isconstrlinear(d,1) => true
@fact MathProgBase.isconstrlinear(d,3) => true
@fact MathProgBase.constr_expr(d,1) => :(2.0*x[1] + 1.0*x[2] <= 1.0)
@fact MathProgBase.constr_expr(d,2) => :(2.0*x[1] + 1.0*x[2] <= 0.0)
@fact MathProgBase.constr_expr(d,3) => :(-5.0 <= 2.0*x[1] + 1.0*x[2] <= 5.0)
if numConstr > 3
@fact MathProgBase.constr_expr(d,4) => :(2.0*x[1]*x[1] + 1.0*x[2] + -2.0 >= 0)
@fact MathProgBase.constr_expr(d,5) => :(sin(x[1]) * cos(x[2]) - 5 == 0.0)
@fact MathProgBase.constr_expr(d,6) => :(1.0*x[1]^2 - 1.0 == 0.0)
@fact MathProgBase.constr_expr(d,7) => :(2.0*x[1]^2 - 2.0 == 0.0)
@fact MathProgBase.constr_expr(d,8) => :(-0.5 <= sin(x[1]) <= 0.5)
end
end
end
MathProgBase.setwarmstart!(m::DummyNLPModel,x) = nothing
MathProgBase.optimize!(m::DummyNLPModel) = nothing
MathProgBase.status(m::DummyNLPModel) = :Optimal
MathProgBase.getobjval(m::DummyNLPModel) = NaN
MathProgBase.getsolution(m::DummyNLPModel) = [1.0,1.0]
function test_nl_mpb()
m = Model(solver=DummyNLPSolver())
@defVar(m, x)
@defVar(m, y)
@setObjective(m, Min, -x+y)
@addConstraint(m, 2x+y <= 1)
@addConstraint(m, 2x+y <= 0)
@addConstraint(m, -5 <= 2x+y <= 5)
#solve(m) # FIXME maybe?
@addConstraint(m, 2x^2+y >= 2)
@addNLConstraint(m, sin(x)*cos(y) == 5)
@addNLConstraint(m, nlconstr[i=1:2], i*x^2 == i)
@addNLConstraint(m, -0.5 <= sin(x) <= 0.5)
solve(m)
@setNLObjective(m, Min, x^y)
solve(m)
end
test_nl_mpb()
facts("[nonlinear] Expression graph for linear problem") do
m = Model()
@defVar(m, x)
@addConstraint(m, 0 <= x <= 1)
@setObjective(m, Max, x)
d = JuMP.JuMPNLPEvaluator(m, JuMP.prepConstrMatrix(m))
MathProgBase.initialize(d, [:ExprGraph])
@fact MathProgBase.obj_expr(d) => :(+(1.0 * x[1]))
end
facts("[nonlinear] Hessians through MPB") do
# Issue 435
m = Model()
@defVar(m, a, start = 1)
@defVar(m, b, start = 2)
@defVar(m, c, start = 3)
@defNLExpr(foo, a * b + c^2)
@setNLObjective(m, Min, foo)
d = JuMP.JuMPNLPEvaluator(m, JuMP.prepConstrMatrix(m))
MathProgBase.initialize(d, [:Hess])
I,J = MathProgBase.hesslag_structure(d)
V = zeros(length(I))
MathProgBase.eval_hesslag(d, V, m.colVal, 1.0, Float64[])
hess_raw = sparse(I,J,V)
# Convert from lower triangular
hess_sparse = hess_raw + hess_raw' - sparse(diagm(diag(hess_raw)))
@test_approx_eq hess_sparse [0.0 1.0 0.0; 1.0 0.0 0.0; 0.0 0.0 2.0]
end