forked from PaddlePaddle/PaddleVideo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmovinet_k400_frame.yaml
122 lines (110 loc) · 3.69 KB
/
movinet_k400_frame.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
MODEL: #MODEL field
framework: "MoViNetRecognizerFrame" #Mandatory, indicate the type of network, associate to the 'paddlevideo/modeling/framework/' .
backbone: #Mandatory, indicate the type of backbone, associate to the 'paddlevideo/modeling/backbones/' .
name: "MoViNet" #Mandatory, The name of backbone.
model_type: "A0"
causal: False #True
conv_type: "3d"
num_classes: 400
head:
name: "MoViNetHead" #Mandatory, indicate the type of head, associate to the 'paddlevideo/modeling/heads'
DATASET: #DATASET field
batch_size: 32 #128 #32 #Mandatory, bacth size
num_workers: 4 #0 #Mandatory, XXX the number of subprocess on each GPU.
train:
format: "FrameDataset" #Mandatory, indicate the type of dataset, associate to the 'paddlevidel/loader/dateset'
#data_prefix: "data/k400/rawframes" #Mandatory, train data root path
file_path: "data/k400/train.list" #Mandatory, train data index file path
suffix: 'img_{:05}.jpg'
valid:
format: "FrameDataset" #Mandatory, indicate the type of dataset, associate to the 'paddlevidel/loader/dateset'
#data_prefix: "data/k400/rawframes" #Mandatory, valid data root path
file_path: "data/k400/val.list" #Mandatory, valid data index file path
suffix: 'img_{:05}.jpg'
test:
format: "FrameDataset" #Mandatory, indicate the type of dataset, associate to the 'paddlevidel/loader/dateset'
#data_prefix: "data/k400/rawframes" #Mandatory, valid data root path
file_path: "data/k400/val.list" #Mandatory, valid data index file path
suffix: 'img_{:05}.jpg'
PIPELINE: #PIPELINE field
train: #Mandotary, indicate the pipeline to deal with the training data, associate to the 'paddlevideo/loader/pipelines/'
decode:
name: "FrameDecoder"
sample:
name: "Sampler"
num_seg: 50
seg_len: 1
valid_mode: False
transform: #Mandotary, image transfrom operator
- Scale:
short_size: 192
- MultiScaleCrop:
target_size: 192
- RandomCrop:
target_size: 172
- RandomFlip:
- Image2Array:
- Normalization:
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
valid: #Mandatory, indicate the pipeline to deal with the validing data. associate to the 'paddlevideo/loader/pipelines/'
decode:
name: "FrameDecoder"
sample:
name: "Sampler"
num_seg: 50
seg_len: 1
valid_mode: True
transform:
- Scale:
short_size: 192
- CenterCrop:
target_size: 172
- Image2Array:
- Normalization:
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
test:
decode:
name: "FrameDecoder"
sample:
name: "Sampler"
num_seg: 50
seg_len: 1
valid_mode: True
transform:
- Scale:
short_size: 192
- CenterCrop:
target_size: 172
- Image2Array:
- Normalization:
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
OPTIMIZER: #OPTIMIZER field
name: 'RMSProp'
momentum: 0.9
rho: 0.9
epsilon: 1.0
learning_rate:
iter_step: True
name: 'CustomWarmupCosineDecay'
max_epoch: 160
warmup_epochs: 10
warmup_start_lr: 0.001
cosine_base_lr: 0.5
weight_decay:
name: 'L2'
value: 0.00003
METRIC:
name: 'CenterCropMetric'
INFERENCE:
name: 'ppTSM_Inference_helper'
num_seg: 50
short_size: 192
target_size: 172
model_name: "MoViNet"
log_interval: 1 #20 #Optional, the interal of logger, default:10
save_interval: 10
epochs: 160 #Mandatory, total epoch
log_level: "INFO" #Optional, the logger level. default: "INFO"