-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathevaluator.py
299 lines (266 loc) · 14.4 KB
/
evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import os, sys
import torch
import torchvision
import torch.nn.functional as F
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
import numpy as np
from time import time
from skimage.io import imread, imsave
import cv2
import pickle
from loguru import logger
from datetime import datetime
from tqdm import tqdm
import wandb
import yaml
import shutil
import mcubes
import trimesh
from glob import glob
from copy import deepcopy
from .delta import DELTA
from .model.pose import PoseModel
from .dataset import build_dataset
from .utils.log_util import WandbLogger
from .utils import util, lossfunc, rotation_converter
from .render.mesh_helper import render_shape
from .utils.metric_util import Evaluator
from .trainer import Trainer
class Evaluator(Trainer):
def __init__(self, config=None):
super(Evaluator, self).__init__(config=config)
def optimize(self, args):
'''
Given trained models, initial pose,
optimize (refine) the pose parameters to fit the input image
'''
savefolder = os.path.join(self.cfg.savedir, 'evaluation', 'optimize')
os.makedirs(savefolder, exist_ok=True)
# load test data
test_dataset = build_dataset.build_train(self.cfg.dataset, mode='test')
test_dataloader = DataLoader(test_dataset, batch_size=1, shuffle=False,
num_workers=0,
pin_memory=True,
drop_last=False)
for batch in tqdm(test_dataloader):
# load data
util.move_dict_to_device(batch, device=self.device)
frame_id = batch['frame_id'][0]
savepath = os.path.join(savefolder, f'{self.cfg.exp_name}_f{frame_id}.jpg')
if os.path.exists(savepath):
continue
# setup optimizer
batch['init_full_pose'] = batch['full_pose'].clone()
pose = batch['full_pose']
init_pose = rotation_converter.batch_matrix2axis(pose[0])[None,...] + 1e-8
pose = torch.nn.Parameter(init_pose.detach())
cam = torch.nn.Parameter(batch['cam'].detach())
exp = torch.nn.Parameter(batch['exp'].detach())
init_lights = torch.rand((1, 6, 6)).float().to(self.device)
lights = torch.nn.Parameter(init_lights)
parameters = [
{'params': [cam], 'lr': 1e-4},
{'params': [pose], 'lr': 1e-4},
{'params': [exp], 'lr': 1e-4},
{'params': [lights], 'lr': 2e-3},
]
pose_optimizer = torch.optim.Adam(params=parameters)
# run optimization
logger.info(f'Optimize frame {frame_id}')
n_iters = 500
for i in tqdm(range(n_iters)):
batch_pose = rotation_converter.batch_axis2matrix(pose.reshape(-1, 3)).reshape(1, 55, 3, 3)
batch['full_pose'] = batch_pose
batch['cam'] = cam
batch['exp'] = exp
batch['light'] = lights
util.move_dict_to_device(batch, self.device)
opdict = self.model(batch)
#-- loss
#### ----------------------- Losses
losses = {}
if self.cfg.use_mesh:
mesh_losses = self._compute_mesh_loss(batch, opdict)
losses = {**losses, **mesh_losses}
if self.cfg.use_nerf:
nerf_losses = self._compute_nerf_loss(batch, opdict)
losses = {**losses, **nerf_losses}
#########################################################d
all_loss = 0.
losses_key = losses.keys()
for key in losses_key:
all_loss = all_loss + losses[key]
losses['all_loss'] = all_loss
## backward
pose_optimizer.zero_grad()
all_loss = losses['all_loss']
all_loss.backward()
pose_optimizer.step()
### visualization
# if i % 50 == 0:
# opdict = self.model(batch, render_image=True, render_normal=self.cfg.nerf.render_normal)
# visdict = {
# 'image': batch['image'],
# 'render': opdict['nerf_image']}
# os.makedirs(os.path.join(savefolder, f'opt_{self.cfg.exp_name}_f{frame_id}'), exist_ok=True)
# savepath = os.path.join(savefolder, f'opt_{self.cfg.exp_name}_f{frame_id}', f'{self.cfg.exp_name}_f{frame_id}_{i:06}.jpg')
# grid_image = util.visualize_grid(visdict, savepath, return_gird=True, size=512, print_key=False)
# print(savepath)
# ## test number gt = batch['image']
# pred = opdict['nerf_image']
# gt = batch['image']
# val_metrics = self.evaluator(pred, gt)
# val_info = f'step {i}'
# for k, v in val_metrics.items():
# val_info = val_info + f'{k}: {v:.6f}, '
# print(val_info)
opdict = self.model.forward_vis(batch)
visdict = {
'image': batch['image'],
'render': opdict['render'],
'render_hybrid': opdict['render_hybrid']}
grid_image = util.visualize_grid(visdict, savepath, return_gird=True, size=512, print_key=False)
os.makedirs(os.path.join(savefolder, f'{self.cfg.exp_name}_f{frame_id}'), exist_ok=True)
for key in visdict.keys():
image = visdict[key]
cv2.imwrite(os.path.join(savefolder, f'{self.cfg.exp_name}_f{frame_id}', f'{self.cfg.exp_name}_f{frame_id}_{key}.jpg'),util.tensor2image(visdict[key][0]))
print(savepath)
logger.info(f'Optimize frame {frame_id} done')
pred = opdict['render']
gt = batch['image']
val_metrics = self.evaluator(pred, gt)
val_info = f'step {i}'
for k, v in val_metrics.items():
val_info = val_info + f'{k}: {v:.6f}, '
print(val_info)
def run(self, args, method='delta', region='face_neck_shoulder'):
''' run evaluation
metrics: PSNR, SSIM, LPIPS
'''
self.device = 'cpu'
self.evaluator.to(self.device)
savefolder = os.path.join(self.cfg.savedir, 'evaluation', 'comparison', f'{region}', f'{method}')
os.makedirs(savefolder, exist_ok=True)
test_l1 = []
test_psnr = []
test_ssim = []
test_lpips = []
# load test data
test_dataset = build_dataset.build_train(self.cfg.dataset, mode='test')
test_dataloader = DataLoader(test_dataset, batch_size=1, shuffle=False,
num_workers=0,
pin_memory=True,
drop_last=False)
subject = test_dataset.subject
for i in tqdm(range(len(test_dataset))):
sample = test_dataset[i]
frame_id = int(sample['frame_id'])
image = sample['image']
mask = sample['mask']
orig_imagepath = sample['imagepath']
orig_image = imread(orig_imagepath)[:,:,:3]/255.
orig_image = torch.from_numpy(orig_image).permute(2,0,1).float().to(image.device)
# load pred data
if method == 'nha':
if subject == 'MVI_1810':
pred_folder = '/is/cluster/yfeng/other_github/neural-head-avatars/experiments/MVI_1810/lightning_logs/version_1/test'
elif subject == 'person_0000':
pred_folder = '/is/cluster/yfeng/other_github/neural-head-avatars/experiments/person_0000/lightning_logs/version_0/test'
elif subject == 'person_0004':
pred_folder = '/is/cluster/yfeng/other_github/neural-head-avatars/experiments/person_0004/lightning_logs/version_0/test'
elif subject == 'b0_0':
pred_folder = '/is/cluster/yfeng/other_github/neural-head-avatars/experiments/b0_0/lightning_logs/version_0/test'
imagepath = os.path.join(pred_folder, f'rgb_{frame_id:06d}.png')
elif method == 'IMavatar':
if subject == 'MVI_1810':
pred_folder = '/home/yfeng/other_github/IMavatar/data/experiments/yufeng/IMavatar/MVI_1810/eval/MVI_1810/epoch_1000/rgb'
elif subject == 'person_0000':
pred_folder = '/home/yfeng/other_github/IMavatar/data/experiments/nha/IMavatar/person_0000/eval/person_0000/epoch_466/rgb'
elif subject == 'person_0004':
pred_folder = '/home/yfeng/other_github/IMavatar/data/experiments/nha_person_0004/IMavatar/person_0004/eval/person_0004/epoch_752/rgb'
elif subject == 'b0_0':
pred_folder = '/home/yfeng/other_github/IMavatar/data/experiments/yao/IMavatar/b0_0/eval/b0_0/epoch_1000/rgb'
imagepath = os.path.join(pred_folder, f'{frame_id}.png')
elif method == 'delta':
exp_folder = self.cfg.savedir
imagepath = os.path.join(exp_folder, 'evaluation', 'optimize', f'{subject}_f{frame_id:06d}', f'{subject}_f{frame_id:06d}_render.jpg')
if not os.path.exists(imagepath):
continue
if method == 'gt':
pred_image = orig_image*mask + torch.ones_like(orig_image)*(1-mask)
else:
pred_image = imread(imagepath)/255.
pred_image = torch.from_numpy(pred_image).permute(2,0,1).float().to(image.device)
if region == 'face_neck_shoulder':
eval_image = orig_image*mask + torch.ones_like(orig_image)*(1-mask)
elif region == 'face':
mask = sample['face_mask']
eval_image = orig_image*mask + torch.ones_like(orig_image)*(1-mask)
pred_image = pred_image*mask + torch.ones_like(pred_image)*(1-mask)
# pred_image = pred_image*mask + orig_image*(1-mask)
# eval_image = orig_image
elif region == 'face_neck':
mask = sample['face_neck_mask']
eval_image = orig_image*mask + torch.ones_like(orig_image)*(1-mask)
pred_image = pred_image*mask + torch.ones_like(pred_image)*(1-mask)
eval_image = eval_image[None,...]
pred_image = pred_image[None,...]
test_metrics = self.evaluator(eval_image.to(self.device), pred_image.to(self.device), mask=mask[None,...].to(self.device))
test_l1.append(test_metrics['l1'].item())
test_psnr.append(test_metrics['psnr'].item())
test_ssim.append(test_metrics['ssim'].item())
test_lpips.append(test_metrics['lpips'].item())
## -- check eval results
savepath = os.path.join(savefolder, f'{method}_{frame_id:06}.jpg')
visdict = {'image': eval_image, 'pred_image': pred_image, 'off': (eval_image-pred_image).abs()}
util.visualize_grid(visdict, savepath, return_gird=True, size=512, print_key=False)
print(f"{subject} - {region} - {method} - L1: {np.mean(test_l1)}")
print(f"{subject} - {region} - {method} - PSNR: {np.mean(test_psnr)}")
print(f"{subject} - {region} - {method} - SSIM: {np.mean(test_ssim)}")
print(f"{subject} - {region} - {method} - LPIPS: {np.mean(test_lpips)}")
# if args.model == 'delta':
# txtpath = os.path.join(savepath, f'{args.model}_{args.version}.txt')
# else:
txtpath = os.path.join(self.cfg.savedir, 'evaluation', 'comparison', f'{region}%_{method}.txt')
with open(txtpath, 'w') as f:
f.write(f"{subject} - {region} - L1: {np.mean(test_l1)} - {method}\n")
f.write(f"{subject} - {region} - PSNR: {np.mean(test_psnr)} - {method} \n")
f.write(f"{subject} - {region} - SSIM: {np.mean(test_ssim)} - {method} \n")
f.write(f"{subject} - {region} - LPIPS: {np.mean(test_lpips)} - {method}\n")
def combine_images(self, method_list='nha, IMavatar, delta'):
rootdir = os.path.join(self.cfg.savedir, 'evaluation', 'comparison', 'face_neck_shoulder', 'gt')
savefolder = os.path.join(self.cfg.savedir, 'evaluation', 'comparison', 'combined')
os.makedirs(savefolder, exist_ok=True)
imagepath_list = glob(os.path.join(rootdir, f'*_*.jpg'))
imagepath_list = sorted(imagepath_list)
for imagepath in imagepath_list:
h = 512
image0 = imread(imagepath)[:, h:2*h, :]
image1 = imread(imagepath.replace('gt', 'nha'))[:, h:2*h, :]
image2 = imread(imagepath.replace('gt', 'IMavatar'))[:, h:2*h, :]
image3 = imread(imagepath.replace('gt', 'delta'))[:, h:2*h, :]
image = np.concatenate([image0, image1, image2, image3], axis=1)
savepath = os.path.join(savefolder, os.path.basename(imagepath))
imsave(savepath, image)
def convert2pdf(self, method_list='nha, IMavatar, delta'):
from PIL import Image
from PIL import ImageFont
from PIL import ImageDraw
rootdir = os.path.join(self.cfg.savedir, 'evaluation', 'comparison', 'face_neck_shoulder', 'gt')
imagepath_list = glob(os.path.join(rootdir, f'*_*.jpg'))
imagepath_list = sorted(imagepath_list)
for imagepath in imagepath_list:
image_1 = Image.open(imagepath_list[0])
im_1 = image_1.convert('RGB')
image_list = []
for imagepath in tqdm(imagepath_list[1:]):
image = Image.open(imagepath).convert('RGB')
draw = ImageDraw.Draw(image)
font = ImageFont.truetype("Microsoft-Sans-Serif.ttf", 30)
draw.text((10, 0), imagepath, (0,0,255),font=font)
# image.save('test1.jpg')
image_list.append(image)
im_1.save(f'{savefolder}/{vis_type}.pdf', save_all=True, append_images=image_list)
print(f'{savefolder}/{vis_type}.pdf')