-
Notifications
You must be signed in to change notification settings - Fork 126
/
eval.py
25 lines (21 loc) · 1.04 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import argparse
import functools
import time
from mvector.trainer import MVectorTrainer
from mvector.utils.utils import add_arguments, print_arguments
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
add_arg('configs', str, 'configs/cam++.yml', "配置文件")
add_arg("use_gpu", bool, True, "是否使用GPU评估模型")
add_arg('save_image_path', str, 'output/images/', "保存结果图的路径")
add_arg('resume_model', str, 'models/CAMPPlus_Fbank/best_model/', "模型的路径")
args = parser.parse_args()
print_arguments(args=args)
# 获取训练器
trainer = MVectorTrainer(configs=args.configs, use_gpu=args.use_gpu)
# 开始评估
start = time.time()
eer, min_dcf, threshold = trainer.evaluate(resume_model=args.resume_model, save_image_path=args.save_image_path)
end = time.time()
print('评估消耗时间:{}s,threshold:{:.5f},EER: {:.5f}, MinDCF: {:.5f}'
.format(int(end - start), threshold, eer, min_dcf))