forked from open-mmlab/mmtracking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
236 lines (210 loc) · 8.48 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp
import time
import mmcv
import torch
from mmcv import Config, DictAction
from mmcv.cnn import fuse_conv_bn
from mmcv.runner import (get_dist_info, init_dist, load_checkpoint,
wrap_fp16_model)
from mmdet.apis import set_random_seed
from mmtrack.core import setup_multi_processes
from mmtrack.datasets import build_dataset
from mmtrack.utils import build_ddp, build_dp, get_device
def parse_args():
parser = argparse.ArgumentParser(description='mmtrack test model')
parser.add_argument('config', help='test config file path')
parser.add_argument('--checkpoint', help='checkpoint file')
parser.add_argument('--out', help='output result file')
parser.add_argument(
'--work-dir',
help='the directory to save the file containing evaluation metrics')
parser.add_argument(
'--fuse-conv-bn',
action='store_true',
help='Whether to fuse conv and bn, this will slightly increase'
'the inference speed')
parser.add_argument(
'--gpu-id',
type=int,
default=0,
help='id of gpu to use '
'(only applicable to non-distributed testing)')
parser.add_argument(
'--format-only',
action='store_true',
help='Format the output results without perform evaluation. It is'
'useful when you want to format the result to a specific format and '
'submit it to the test server')
parser.add_argument('--eval', type=str, nargs='+', help='eval types')
parser.add_argument('--show', action='store_true', help='show results')
parser.add_argument(
'--show-score-thr',
type=float,
default=0.3,
help='score threshold (default: 0.3)')
parser.add_argument(
'--show-dir', help='directory where painted images will be saved')
parser.add_argument(
'--gpu-collect',
action='store_true',
help='whether to use gpu to collect results.')
parser.add_argument(
'--tmpdir',
help='tmp directory used for collecting results from multiple '
'workers, available when gpu-collect is not specified')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file.')
parser.add_argument(
'--eval-options',
nargs='+',
action=DictAction,
help='custom options for evaluation, the key-value pair in xxx=yyy '
'format will be kwargs for dataset.evaluate() function')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def main():
args = parse_args()
assert args.out or args.eval or args.format_only or args.show \
or args.show_dir, \
('Please specify at least one operation (save/eval/format/show the '
'results / save the results) with the argument "--out", "--eval"'
', "--format-only", "--show" or "--show-dir"')
if args.eval and args.format_only:
raise ValueError('--eval and --format_only cannot be both specified')
if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
raise ValueError('The output file must be a pkl file.')
cfg = Config.fromfile(args.config)
if cfg.get('USE_MMDET', False):
from mmdet.apis import multi_gpu_test, single_gpu_test
from mmdet.datasets import build_dataloader
from mmdet.models import build_detector as build_model
if 'detector' in cfg.model:
cfg.model = cfg.model.detector
elif cfg.get('TRAIN_REID', False):
from mmdet.apis import multi_gpu_test, single_gpu_test
from mmdet.datasets import build_dataloader
from mmtrack.models import build_reid as build_model
if 'reid' in cfg.model:
cfg.model = cfg.model.reid
else:
from mmtrack.apis import multi_gpu_test, single_gpu_test
from mmtrack.datasets import build_dataloader
from mmtrack.models import build_model
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# set multi-process settings
setup_multi_processes(cfg)
# set random seeds. Force setting fixed seed and deterministic=True in SOT
# configs
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
if cfg.get('seed', None) is not None:
set_random_seed(
cfg.seed, deterministic=cfg.get('deterministic', False))
cfg.data.test.test_mode = True
cfg.gpu_ids = [args.gpu_id]
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
rank, _ = get_dist_info()
# allows not to create
if args.work_dir is not None and rank == 0:
mmcv.mkdir_or_exist(osp.abspath(args.work_dir))
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
json_file = osp.join(args.work_dir, f'eval_{timestamp}.log.json')
# build the dataloader
dataset = build_dataset(cfg.data.test)
data_loader = build_dataloader(
dataset,
samples_per_gpu=1,
workers_per_gpu=cfg.data.workers_per_gpu,
dist=distributed,
shuffle=False)
cfg.device = get_device() if cfg.get('device',
None) is None else cfg.device
# build the model and load checkpoint
if cfg.get('test_cfg', False):
model = build_model(
cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg)
else:
model = build_model(cfg.model)
# We need call `init_weights()` to load pretained weights in MOT task.
model.init_weights()
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
wrap_fp16_model(model)
if args.checkpoint is not None:
checkpoint = load_checkpoint(
model, args.checkpoint, map_location='cpu')
if 'meta' in checkpoint and 'CLASSES' in checkpoint['meta']:
model.CLASSES = checkpoint['meta']['CLASSES']
if not hasattr(model, 'CLASSES'):
model.CLASSES = dataset.CLASSES
if args.fuse_conv_bn:
model = fuse_conv_bn(model)
if not distributed:
model = build_dp(model, cfg.device, device_ids=cfg.gpu_ids)
outputs = single_gpu_test(
model,
data_loader,
args.show,
args.show_dir,
show_score_thr=args.show_score_thr)
else:
model = build_ddp(
model,
cfg.device,
device_ids=[int(os.environ['LOCAL_RANK'])],
broadcast_buffers=False)
# In multi_gpu_test, if tmpdir is None, some tesnors
# will init on cuda by default, and no device choice supported.
# Init a tmpdir to avoid error on npu here.
if cfg.device == 'npu' and args.tmpdir is None:
args.tmpdir = './npu_tmpdir'
outputs = multi_gpu_test(model, data_loader, args.tmpdir,
args.gpu_collect)
rank, _ = get_dist_info()
if rank == 0:
if args.out:
print(f'\nwriting results to {args.out}')
mmcv.dump(outputs, args.out)
kwargs = {} if args.eval_options is None else args.eval_options
if args.format_only:
dataset.format_results(outputs, **kwargs)
if args.eval:
eval_kwargs = cfg.get('evaluation', {}).copy()
# hard-code way to remove EvalHook args
eval_hook_args = [
'interval', 'tmpdir', 'start', 'gpu_collect', 'save_best',
'rule', 'by_epoch'
]
for key in eval_hook_args:
eval_kwargs.pop(key, None)
eval_kwargs.update(dict(metric=args.eval, **kwargs))
metric = dataset.evaluate(outputs, **eval_kwargs)
print(metric)
metric_dict = dict(
config=args.config, mode='test', epoch=cfg.total_epochs)
metric_dict.update(metric)
if args.work_dir is not None:
mmcv.dump(metric_dict, json_file)
if __name__ == '__main__':
main()