-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnn.py
140 lines (112 loc) · 5.63 KB
/
nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import numpy as np
from validation import compute_f1
from keras.models import Model
from keras.layers import TimeDistributed,Conv1D,Dense,Embedding,Input,Dropout,LSTM,Bidirectional,MaxPooling1D,Flatten,concatenate
from prepro import readfile,createBatches,createMatrices,iterate_minibatches,addCharInformatioin,padding
from keras.utils import Progbar
from keras.preprocessing.sequence import pad_sequences
from keras.initializers import RandomUniform
epochs = 50
def tag_dataset(dataset):
correctLabels = []
predLabels = []
b = Progbar(len(dataset))
for i,data in enumerate(dataset):
tokens, casing,char, labels = data
tokens = np.asarray([tokens])
casing = np.asarray([casing])
char = np.asarray([char])
pred = model.predict([tokens, casing,char], verbose=False)[0]
pred = pred.argmax(axis=-1) #Predict the classes
correctLabels.append(labels)
predLabels.append(pred)
b.update(i)
b.update(i+1)
return predLabels, correctLabels
trainSentences = readfile("data/train.txt")
devSentences = readfile("data/valid.txt")
testSentences = readfile("data/test.txt")
trainSentences = addCharInformatioin(trainSentences)
devSentences = addCharInformatioin(devSentences)
testSentences = addCharInformatioin(testSentences)
labelSet = set()
words = {}
for dataset in [trainSentences, devSentences, testSentences]:
for sentence in dataset:
for token,char,label in sentence:
labelSet.add(label)
words[token.lower()] = True
# :: Create a mapping for the labels ::
label2Idx = {}
for label in labelSet:
label2Idx[label] = len(label2Idx)
# :: Hard coded case lookup ::
case2Idx = {'numeric': 0, 'allLower':1, 'allUpper':2, 'initialUpper':3, 'other':4, 'mainly_numeric':5, 'contains_digit': 6, 'PADDING_TOKEN':7}
caseEmbeddings = np.identity(len(case2Idx), dtype='float32')
# :: Read in word embeddings ::
word2Idx = {}
wordEmbeddings = []
fEmbeddings = open("embeddings/glove.6B.100d.txt", encoding="utf-8")
for line in fEmbeddings:
split = line.strip().split(" ")
word = split[0]
if len(word2Idx) == 0: #Add padding+unknown
word2Idx["PADDING_TOKEN"] = len(word2Idx)
vector = np.zeros(len(split)-1) #Zero vector vor 'PADDING' word
wordEmbeddings.append(vector)
word2Idx["UNKNOWN_TOKEN"] = len(word2Idx)
vector = np.random.uniform(-0.25, 0.25, len(split)-1)
wordEmbeddings.append(vector)
if split[0].lower() in words:
vector = np.array([float(num) for num in split[1:]])
wordEmbeddings.append(vector)
word2Idx[split[0]] = len(word2Idx)
wordEmbeddings = np.array(wordEmbeddings)
char2Idx = {"PADDING":0, "UNKNOWN":1}
for c in " 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ.,-_()[]{}!?:;#'\"/\\%$`&=*+@^~|":
char2Idx[c] = len(char2Idx)
train_set = padding(createMatrices(trainSentences,word2Idx, label2Idx, case2Idx,char2Idx))
dev_set = padding(createMatrices(devSentences,word2Idx, label2Idx, case2Idx,char2Idx))
test_set = padding(createMatrices(testSentences, word2Idx, label2Idx, case2Idx,char2Idx))
idx2Label = {v: k for k, v in label2Idx.items()}
np.save("models/idx2Label.npy",idx2Label)
np.save("models/word2Idx.npy",word2Idx)
train_batch,train_batch_len = createBatches(train_set)
dev_batch,dev_batch_len = createBatches(dev_set)
test_batch,test_batch_len = createBatches(test_set)
words_input = Input(shape=(None,),dtype='int32',name='words_input')
words = Embedding(input_dim=wordEmbeddings.shape[0], output_dim=wordEmbeddings.shape[1], weights=[wordEmbeddings], trainable=False)(words_input)
casing_input = Input(shape=(None,), dtype='int32', name='casing_input')
casing = Embedding(output_dim=caseEmbeddings.shape[1], input_dim=caseEmbeddings.shape[0], weights=[caseEmbeddings], trainable=False)(casing_input)
character_input=Input(shape=(None,52,),name='char_input')
embed_char_out=TimeDistributed(Embedding(len(char2Idx),30,embeddings_initializer=RandomUniform(minval=-0.5, maxval=0.5)), name='char_embedding')(character_input)
dropout= Dropout(0.5)(embed_char_out)
conv1d_out= TimeDistributed(Conv1D(kernel_size=3, filters=30, padding='same',activation='tanh', strides=1))(dropout)
maxpool_out=TimeDistributed(MaxPooling1D(52))(conv1d_out)
char = TimeDistributed(Flatten())(maxpool_out)
char = Dropout(0.5)(char)
output = concatenate([words, casing,char])
output = Bidirectional(LSTM(200, return_sequences=True, dropout=0.50, recurrent_dropout=0.25))(output)
output = TimeDistributed(Dense(len(label2Idx), activation='softmax'))(output)
model = Model(inputs=[words_input, casing_input,character_input], outputs=[output])
model.compile(loss='sparse_categorical_crossentropy', optimizer='nadam')
model.summary()
# plot_model(model, to_file='model.png')
for epoch in range(epochs):
print("Epoch %d/%d"%(epoch,epochs))
a = Progbar(len(train_batch_len))
for i,batch in enumerate(iterate_minibatches(train_batch,train_batch_len)):
labels, tokens, casing,char = batch
model.train_on_batch([tokens, casing,char], labels)
a.update(i)
a.update(i+1)
print(' ')
model.save("models/model.h5")
# Performance on dev dataset
predLabels, correctLabels = tag_dataset(dev_batch)
pre_dev, rec_dev, f1_dev = compute_f1(predLabels, correctLabels, idx2Label)
print("Dev-Data: Prec: %.3f, Rec: %.3f, F1: %.3f" % (pre_dev, rec_dev, f1_dev))
# Performance on test dataset
predLabels, correctLabels = tag_dataset(test_batch)
pre_test, rec_test, f1_test= compute_f1(predLabels, correctLabels, idx2Label)
print("Test-Data: Prec: %.3f, Rec: %.3f, F1: %.3f" % (pre_test, rec_test, f1_test))