-
Notifications
You must be signed in to change notification settings - Fork 387
/
trainer.py
194 lines (163 loc) · 8.31 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import torch
import time
import numpy as np
from torchvision.utils import make_grid
from torchvision import transforms
from utils import transforms as local_transforms
from base import BaseTrainer, DataPrefetcher
from utils.helpers import colorize_mask
from utils.metrics import eval_metrics, AverageMeter
from tqdm import tqdm
class Trainer(BaseTrainer):
def __init__(self, model, loss, resume, config, train_loader, val_loader=None, train_logger=None, prefetch=True):
super(Trainer, self).__init__(model, loss, resume, config, train_loader, val_loader, train_logger)
self.wrt_mode, self.wrt_step = 'train_', 0
self.log_step = config['trainer'].get('log_per_iter', int(np.sqrt(self.train_loader.batch_size)))
if config['trainer']['log_per_iter']: self.log_step = int(self.log_step / self.train_loader.batch_size) + 1
self.num_classes = self.train_loader.dataset.num_classes
# TRANSORMS FOR VISUALIZATION
self.restore_transform = transforms.Compose([
local_transforms.DeNormalize(self.train_loader.MEAN, self.train_loader.STD),
transforms.ToPILImage()])
self.viz_transform = transforms.Compose([
transforms.Resize((400, 400)),
transforms.ToTensor()])
if self.device == torch.device('cpu'): prefetch = False
if prefetch:
self.train_loader = DataPrefetcher(train_loader, device=self.device)
self.val_loader = DataPrefetcher(val_loader, device=self.device)
torch.backends.cudnn.benchmark = True
def _train_epoch(self, epoch):
self.logger.info('\n')
self.model.train()
if self.config['arch']['args']['freeze_bn']:
if isinstance(self.model, torch.nn.DataParallel): self.model.module.freeze_bn()
else: self.model.freeze_bn()
self.wrt_mode = 'train'
tic = time.time()
self._reset_metrics()
tbar = tqdm(self.train_loader, ncols=130)
for batch_idx, (data, target) in enumerate(tbar):
self.data_time.update(time.time() - tic)
#data, target = data.to(self.device), target.to(self.device)
self.lr_scheduler.step(epoch=epoch-1)
# LOSS & OPTIMIZE
self.optimizer.zero_grad()
output = self.model(data)
if self.config['arch']['type'][:3] == 'PSP':
assert output[0].size()[2:] == target.size()[1:]
assert output[0].size()[1] == self.num_classes
loss = self.loss(output[0], target)
loss += self.loss(output[1], target) * 0.4
output = output[0]
else:
assert output.size()[2:] == target.size()[1:]
assert output.size()[1] == self.num_classes
loss = self.loss(output, target)
if isinstance(self.loss, torch.nn.DataParallel):
loss = loss.mean()
loss.backward()
self.optimizer.step()
self.total_loss.update(loss.item())
# measure elapsed time
self.batch_time.update(time.time() - tic)
tic = time.time()
# LOGGING & TENSORBOARD
if batch_idx % self.log_step == 0:
self.wrt_step = (epoch - 1) * len(self.train_loader) + batch_idx
self.writer.add_scalar(f'{self.wrt_mode}/loss', loss.item(), self.wrt_step)
# FOR EVAL
seg_metrics = eval_metrics(output, target, self.num_classes)
self._update_seg_metrics(*seg_metrics)
pixAcc, mIoU, _ = self._get_seg_metrics().values()
# PRINT INFO
tbar.set_description('TRAIN ({}) | Loss: {:.3f} | Acc {:.2f} mIoU {:.2f} | B {:.2f} D {:.2f} |'.format(
epoch, self.total_loss.average,
pixAcc, mIoU,
self.batch_time.average, self.data_time.average))
# METRICS TO TENSORBOARD
seg_metrics = self._get_seg_metrics()
for k, v in list(seg_metrics.items())[:-1]:
self.writer.add_scalar(f'{self.wrt_mode}/{k}', v, self.wrt_step)
for i, opt_group in enumerate(self.optimizer.param_groups):
self.writer.add_scalar(f'{self.wrt_mode}/Learning_rate_{i}', opt_group['lr'], self.wrt_step)
#self.writer.add_scalar(f'{self.wrt_mode}/Momentum_{k}', opt_group['momentum'], self.wrt_step)
# RETURN LOSS & METRICS
log = {'loss': self.total_loss.average,
**seg_metrics}
#if self.lr_scheduler is not None: self.lr_scheduler.step()
return log
def _valid_epoch(self, epoch):
if self.val_loader is None:
self.logger.warning('Not data loader was passed for the validation step, No validation is performed !')
return {}
self.logger.info('\n###### EVALUATION ######')
self.model.eval()
self.wrt_mode = 'val'
self._reset_metrics()
tbar = tqdm(self.val_loader, ncols=130)
with torch.no_grad():
val_visual = []
for batch_idx, (data, target) in enumerate(tbar):
#data, target = data.to(self.device), target.to(self.device)
# LOSS
output = self.model(data)
loss = self.loss(output, target)
if isinstance(self.loss, torch.nn.DataParallel):
loss = loss.mean()
self.total_loss.update(loss.item())
seg_metrics = eval_metrics(output, target, self.num_classes)
self._update_seg_metrics(*seg_metrics)
# LIST OF IMAGE TO VIZ (15 images)
if len(val_visual) < 15:
target_np = target.data.cpu().numpy()
output_np = output.data.max(1)[1].cpu().numpy()
val_visual.append([data[0].data.cpu(), target_np[0], output_np[0]])
# PRINT INFO
pixAcc, mIoU, _ = self._get_seg_metrics().values()
tbar.set_description('EVAL ({}) | Loss: {:.3f}, PixelAcc: {:.2f}, Mean IoU: {:.2f} |'.format( epoch,
self.total_loss.average,
pixAcc, mIoU))
# WRTING & VISUALIZING THE MASKS
val_img = []
palette = self.train_loader.dataset.palette
for d, t, o in val_visual:
d = self.restore_transform(d)
t, o = colorize_mask(t, palette), colorize_mask(o, palette)
d, t, o = d.convert('RGB'), t.convert('RGB'), o.convert('RGB')
[d, t, o] = [self.viz_transform(x) for x in [d, t, o]]
val_img.extend([d, t, o])
val_img = torch.stack(val_img, 0)
val_img = make_grid(val_img.cpu(), nrow=3, padding=5)
self.writer.add_image(f'{self.wrt_mode}/inputs_targets_predictions', val_img, self.wrt_step)
# METRICS TO TENSORBOARD
self.wrt_step = (epoch) * len(self.val_loader)
self.writer.add_scalar(f'{self.wrt_mode}/loss', self.total_loss.average, self.wrt_step)
seg_metrics = self._get_seg_metrics()
for k, v in list(seg_metrics.items())[:-1]:
self.writer.add_scalar(f'{self.wrt_mode}/{k}', v, self.wrt_step)
log = {
'val_loss': self.total_loss.average,
**seg_metrics
}
return log
def _reset_metrics(self):
self.batch_time = AverageMeter()
self.data_time = AverageMeter()
self.total_loss = AverageMeter()
self.total_inter, self.total_union = 0, 0
self.total_correct, self.total_label = 0, 0
def _update_seg_metrics(self, correct, labeled, inter, union):
self.total_correct += correct
self.total_label += labeled
self.total_inter += inter
self.total_union += union
def _get_seg_metrics(self):
pixAcc = 1.0 * self.total_correct / (np.spacing(1) + self.total_label)
IoU = 1.0 * self.total_inter / (np.spacing(1) + self.total_union)
mIoU = IoU.mean()
return {
"Pixel_Accuracy": np.round(pixAcc, 3),
"Mean_IoU": np.round(mIoU, 3),
"Class_IoU": dict(zip(range(self.num_classes), np.round(IoU, 3)))
}