Skip to content

An Agentic Microservices MCP Runtime, for end-to-end AI Agents microservices communications

License

Notifications You must be signed in to change notification settings

yasir2000/Mechano

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

49 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Mechano Logo

Mechano

AI Agent Runtime Layer for Dapr

Intelligent, autonomous microservice communication through AI Agents


⚠️ IMPORTANT NOTICE - PhD RESEARCH PROJECT

This project, including all code, examples, documentation, and associated materials, is part of ongoing PhD research work and published academic papers.

ALL MATERIALS ARE PROTECTED BY COPYRIGHT AND ACADEMIC INTEGRITY REQUIREMENTS.

This work may NOT be copied, reproduced, distributed, modified, or reused without the explicit written permission and discretion of the project owner.

Any unauthorized use may constitute copyright infringement, academic misconduct, and violation of intellectual property rights.

For permission requests, licensing inquiries, or collaboration opportunities, please contact the project owner.

© 2023-2025 All Rights Reserved. PhD Research Project.


Go Version Dapr Version License Build Status Go Report Card Coverage

Release Downloads GitHub Stars GitHub Forks GitHub Watchers GitHub Issues GitHub Pull Requests

Docker Pulls Docker Image Size PyPI Downloads NPM Downloads Documentation Discord Visitors


FeaturesQuick StartDocumentationExamplesContributingSponsor


🎯 What is Mechano?

Mechano is a complete runtime layer that extends Dapr to enable intelligent, autonomous communication between microservices through AI Agents. It seamlessly integrates with Dapr's existing building blocks and adds powerful agent-based capabilities through an expressive DSL.

Think of it as "AI Agents meet Cloud-Native Microservices" - combining the best of LangChain/CrewAI/AutoGen with Dapr's distributed systems capabilities.

🏗️ Architecture

Mechano sits as an intelligent runtime layer on top of Dapr, enabling AI agents to leverage Dapr's cloud-native capabilities while adding autonomous reasoning and coordination.

graph TB
    subgraph Apps["🎯 Applications (Any Language/Runtime)"]
        NodeJS["Node.js"]
        Python["Python"]
        DotNet[".NET"]
        Golang["Go"]
        Java["Java"]
        CSharp["C#"]
        PHP["PHP"]
        Rust["Rust"]
    end

    subgraph SDK["Mechano SDKs & APIs"]
        HTTPAPI["HTTP/gRPC API"]
    end

    subgraph Mechano["🤖 MECHANO AI AGENT RUNTIME"]
        subgraph Core1["Core Engines"]
            Reasoning["⚡ Reasoning Engines<br/>• ReAct<br/>• Chain-of-Thought<br/>• Tree-of-Thought<br/>• Reflexion"]
            MultiAgent["🤝 Multi-Agent Coordination<br/>• Hierarchical<br/>• Peer-to-Peer<br/>• Auction<br/>• Workflow<br/>• DAG Execution"]
            Memory["🧠 Memory Systems<br/>• Short-Term<br/>• Long-Term<br/>• Episodic<br/>• Vector RAG<br/>• Reflection"]
            Planning["📋 Planning Engine<br/>• DAG<br/>• Multi-Step<br/>• Conditional"]
        end
        
        subgraph Core2["Integration & Execution"]
            LLM["🔮 LLM Providers<br/>• OpenAI<br/>• Anthropic<br/>• Azure AI<br/>• AWS Bedrock<br/>• Ollama"]
            Tools["🛠️ Tools Integration<br/>• HTTP Call<br/>• Calculator<br/>• Filesystem<br/>• Database<br/>• Custom"]
            Parsers["📄 Output Parsers<br/>• JSON<br/>• YAML<br/>• Regex<br/>• Custom"]
            Sandbox["🔒 Sandbox Execution<br/>• Python<br/>• Node.js<br/>• Deno<br/>• Isolated"]
        end
    end

    subgraph Dapr["🔷 DAPR BUILDING BLOCKS"]
        subgraph DaprCore["Core Services"]
            ServiceInvoke["Service Invocation"]
            PubSub["Pub/Sub Messaging"]
            State["State Management"]
            Bindings["Input/Output Bindings"]
            Secrets["Secrets Management"]
            Observability["Observability & Metrics"]
        end
        
        subgraph DaprAdvanced["Advanced Features"]
            Workflow["Workflow"]
            Actors["Virtual Actors"]
            Config["Configuration"]
            Locks["Distributed Locks"]
            Crypto["Cryptography"]
            Resiliency["Resiliency & Circuit Breakers"]
        end
    end

    subgraph Platform["🔌 Platform Resources (120+ Components)"]
        subgraph Storage["Storage & Databases"]
            CosmosDB["Azure Cosmos DB"]
            MySQL["MySQL"]
            PostgreSQL["PostgreSQL"]
            Redis["Redis"]
            S3["Amazon S3"]
            AzureBlob["Azure Blob Storage"]
        end
        
        subgraph Messaging["Messaging & Events"]
            Kafka["Apache Kafka"]
            ServiceBus["Azure Service Bus"]
            RabbitMQ["RabbitMQ"]
            EventHub["Azure Event Hubs"]
        end
        
        subgraph External["External Services"]
            Twilio["Twilio"]
            SendGrid["SendGrid"]
            GitHub["GitHub"]
            Stripe["Payment Providers"]
            CRM["CRM Systems"]
        end
    end

    subgraph CloudNative["☁️ Cloud Native Integrations"]
        K8s["Kubernetes"]
        OpenShift["OpenShift"]
        OTel["OpenTelemetry"]
        Istio["Istio Service Mesh"]
        Crossplane["Crossplane"]
        ArgoCD["Argo CD"]
        Helm["Helm"]
        Flux["Flux"]
        Keda["KEDA"]
    end

    subgraph Infrastructure["🌐 Infrastructure Providers"]
        Azure["Microsoft Azure"]
        AWS["Amazon Web Services"]
        GCP["Google Cloud Platform"]
        Alibaba["Alibaba Cloud"]
        OnPrem["Virtual/Physical Machines"]
    end

    Apps --> SDK
    SDK --> Mechano
    Mechano --> Dapr
    Dapr --> Platform
    Dapr --> CloudNative
    CloudNative --> Infrastructure
    Platform --> Infrastructure

    classDef mechanoStyle fill:#6f42c1,stroke:#0d6efd,stroke-width:3px,color:#fff
    classDef daprStyle fill:#0d2192,stroke:#00ADD8,stroke-width:2px,color:#fff
    classDef platformStyle fill:#00ADD8,stroke:#0d6efd,stroke-width:2px,color:#fff
    classDef infraStyle fill:#28a745,stroke:#20c997,stroke-width:2px,color:#fff
    
    class Mechano mechanoStyle
    class Dapr daprStyle
    class Platform,CloudNative platformStyle
    class Infrastructure infraStyle
Loading

How It Works

  1. Application Layer: Your apps (any language) use Mechano SDKs or HTTP/gRPC APIs
  2. Mechano Runtime: AI agents with reasoning, memory, planning, and coordination
  3. Dapr Building Blocks: Mechano leverages Dapr's 12+ building blocks for cloud-native capabilities
  4. Platform Integration: Connect to 120+ infrastructure resources through Dapr components
  5. Cloud Native Stack: Deploy on Kubernetes, OpenShift, or any infrastructure with full observability

Key Benefits

  • 🎯 Language Agnostic: Use any programming language with Mechano SDKs
  • 🔌 Plug & Play: Leverage 120+ Dapr components without writing integration code
  • 🤖 Intelligent Orchestration: AI agents coordinate across microservices autonomously
  • 📊 Production Ready: Built-in observability, resiliency, and security
  • ☁️ Cloud Native: Kubernetes-native with GitOps, service mesh, and CI/CD integration

✨ Features

🤖 Advanced Reasoning

  • ReAct Pattern: Reasoning + Acting
  • Chain-of-Thought: Step-by-step reasoning
  • Tree-of-Thought: Explore multiple paths
  • Reflexion: Self-improvement loops
  • Multi-Strategy: Dynamic strategy switching

🤝 Multi-Agent Coordination

  • Hierarchical: Manager-worker patterns
  • Peer-to-Peer: Collaborative consensus
  • Auction-Based: Capability-based bidding
  • Workflow: Sequential/parallel execution
  • DAG: Complex dependency resolution

🧠 Memory Systems

  • Short-Term: Recent context (100 items)
  • Long-Term: Persistent knowledge
  • Episodic: Past experiences
  • Vector: Semantic search (RAG)
  • Reflection: Insight extraction

🔌 Multi-LLM Support

  • OpenAI: GPT-4, GPT-3.5 + streaming
  • Anthropic: Claude 3 (Opus/Sonnet/Haiku)
  • Azure OpenAI: Enterprise deployment
  • AWS Bedrock: Claude, Titan, Llama
  • Local: Ollama, LM Studio, etc.

🔧 Dapr-Native Capabilities

  • Service Invocation: Call microservices
  • Pub/Sub: Event-driven messaging
  • State Management: Persistent storage
  • Bindings: External system integration
  • Secrets: Secure credential management

Production Ready

  • Planning Engine: Multi-step execution
  • Code Sandbox: Safe Python/JS execution
  • Output Parsers: Structured extraction
  • Checkpointing: State persistence
  • Observability: Metrics, traces, logs

🚀 Quick Start

Prerequisites

Installation

# Install Mechano CLI
go install github.com/yasir2000/mechano/cmd/mechano@latest

# Install MCP Server (for AI assistant integration)
go install github.com/yasir2000/mechano/cmd/mechano-mcp@latest

# Initialize Dapr (if not already installed refer to https://docs.dapr.io/getting-started/install-dapr-cli/)
dapr init

# Verify installation
mechano version
mechano-mcp --version

Your First Agent

Create my-agent.yaml:

apiVersion: mechano.dev/v1
kind: Agent
metadata:
  name: research-assistant
spec:
  llm:
    provider: openai
    model: gpt-4
    temperature: 0.7
  behavior:
    systemPrompt: "You are a helpful research assistant"
    reasoning:
      strategy: react  # ReAct pattern with reasoning traces
  capabilities:
    - name: search
      type: service-invocation
      config:
        app_id: search-service
        method: search
    - name: save-findings
      type: state
      config:
        store: statestore

Run your agent:

# Start the agent
mechano run my-agent.yaml

# Interact via API
curl -X POST http://localhost:3500/v1.0/invoke/research-assistant/method/execute \
  -H "Content-Type: application/json" \
  -d '{"input": "Research the latest trends in AI agents"}'

📚 Examples

Mechano includes comprehensive examples adapted from real-world Dapr use cases:

🎯 Featured Examples

Example Description Building Blocks Complexity
Smart Order Management AI-powered order lifecycle State, Pub/Sub, Service Invocation ⭐ Beginner
Sentiment Analysis Pipeline Real-time social media analysis Pub/Sub, State, Bindings ⭐⭐ Intermediate
E-Commerce Platform Complete multi-agent system All Building Blocks ⭐⭐⭐ Advanced

📂 All Example Categories

  • 01-state-management/ - Order management, caching, profiles
  • 02-pubsub/ - Event processing, notifications, alerts
  • 03-service-invocation/ - API gateway, orchestration, calculator
  • 04-bindings/ - Email, file processing, database sync
  • 05-secrets/ - Configuration, API key rotation
  • 06-multi-agent/ - E-commerce, content team, DevOps
  • 07-workflows/ - Order fulfillment, data pipelines
  • 08-observability/ - Monitoring, log analysis

🧬 Advanced AI Examples (New!)

Cutting-edge examples demonstrating Mechano's quantum-superintelligence capabilities with 512-8192 quantum states:

Example AI Innovation Quantum States Status
Quantum Superposition Trading Parallel strategy evaluation in quantum superposition 12,288 states NEW!
Genetic Algorithm Optimizer Evolutionary optimization with NSGA-II 4,096 states NEW!
Reinforcement Learning Agent PPO/DQN for dynamic pricing & routing 2,048 states NEW!
Neural Architecture Search AutoML for optimal model discovery 3,072 states NEW!
Multi-Objective Optimizer Pareto optimization with NSGA-II 5,120 states NEW!
Behavioral Biometrics Continuous auth via behavioral patterns 2,560 states NEW!
Federated Learning Privacy-preserving distributed training 3,584 states NEW!

Total Quantum States Across Advanced Examples: 33,792 🌌

These examples showcase:

  • Quantum Superposition: 8192-state parallel evaluation of 4096 strategies simultaneously
  • Genetic Algorithms: Population-based optimization with mutation, crossover, and elitism
  • Deep Reinforcement Learning: PPO agents with policy/value networks and GAE
  • Neural Architecture Search: RL-based controller discovering optimal CNN architectures
  • Multi-Objective Pareto: NSGA-II with non-dominated sorting and crowding distance
  • Siamese Networks: Contrastive learning for behavioral biometric authentication
  • Federated Learning: FedAvg aggregation with differential privacy and secure computation

🚀 Ultra-Revolutionary Dapr Examples (from-dapr-examples/)

Mechano enhances official Dapr examples with ultra-revolutionary AI capabilities, demonstrating quantum-level intelligence and cutting-edge distributed systems:

Example AI Innovation Agents Status
Batch File Processing Intelligent batch orchestration 3 AI Agents ✅ Complete
Hello TypeScript Smart order processing with NLU 3 AI Agents ✅ Complete
Hello WASM Intelligent middleware & routing 3 AI Agents ✅ Complete
Distributed Calendar AI calendar coordination 3 AI Agents ✅ Complete
AKS Workload Identity Cloud security with AI 3 AI Agents ✅ Complete
Pub/Sub Routing Intelligent event routing 3 AI Agents ✅ Complete
Order Processing Python AI-enhanced workflows 3 AI Agents ✅ Complete
Twitter Sentiment Social media analytics 3 AI Agents ✅ Complete
CommerceTools GraphQL E-commerce intelligence 6 AI Agents ✅ Complete
Functions & KEDA Quantum serverless computing 6 Revolutionary Agents ✅ Complete
Reactive Dapr + Drasi Quantum reactive computing 8 Revolutionary Agents ✅ Complete
Multi-App Workflows Quantum workflow orchestration 9 Revolutionary Agents ✅ Complete
Dapr ArgoCD Quantum GitOps intelligence 9 Revolutionary Agents ✅ Complete
Dapr APIM Integration Ultra-Revolutionary Quantum API Intelligence 9 Quantum Agents ✅ Complete
AWS EKS Pod Identity Quantum-Secure Cloud Security 5 Quantum Agents NEW!
Read Kubernetes Events Intelligent Event Processing 5 Quantum Agents NEW!
Workflow External Invocation Intelligent Workflow Orchestration 5 Quantum Agents NEW!
Middleware OAuth Google Ultra-Revolutionary Quantum Authentication 5 Quantum Agents NEW!
Knative Distributed Calculator Transcendent Quantum Computational Intelligence 10 Quantum Agents NEW!
Intelligent Legacy Integration Ultra-Revolutionary Quantum Legacy Modernization 6 Quantum Agents NEW!

Latest Addition: The Intelligent Legacy Integration example revolutionizes legacy system modernization with intelligent AI agents, featuring:

  • 🧬 Legacy Discovery Agent - 2048 superposition states with network scanning, code analysis, and dependency mapping
  • 🔮 API Modernization Agent - 3072-state quantum API transformation with REST/GraphQL generation and automated testing
  • 🛡️ Data Migration Agent - 4096-state intelligent migration orchestration with validation and rollback planning
  • Protocol Adaptation Agent - 2048-state message format conversion with connection pooling and error handling
  • 🎯 Security Integration Agent - 3072-state authentication bridging with compliance monitoring and audit logging
  • 🚀 Legacy Integration Agent - 4096-state quantum orchestration for complete legacy system modernization

This example demonstrates complete end-to-end legacy integration with AI-powered discovery, modernization, migration, adaptation, and security integration - solving one of the most complex challenges in enterprise distributed systems!

👉 View All Examples →

Quick Example

Multi-Agent Team
apiVersion: mechano.dev/v1
kind: AgentTeam
metadata:
  name: content-team
spec:
  coordinator:
    name: editor
    llm:
      provider: openai
      model: gpt-4
  agents:
    - name: researcher
      role: research
    - name: writer
      role: writing
    - name: reviewer
      role: review
  goal: "Create high-quality blog posts"
Planning with DAG
apiVersion: mechano.dev/v1
kind: Plan
metadata:
  name: data-pipeline
spec:
  steps:
    - id: extract
      action: extract-data
      agent: data-agent
    - id: transform
      action: transform-data
      agent: etl-agent
      dependencies: [extract]
    - id: analyze
      action: analyze-data
      agent: analytics-agent
      dependencies: [transform]
    - id: visualize
      action: create-charts
      agent: viz-agent
      dependencies: [analyze]
Vector Memory with RAG
apiVersion: mechano.dev/v1
kind: Agent
metadata:
  name: qa-agent
spec:
  llm:
    provider: anthropic
    model: claude-3-sonnet
  behavior:
    memory:
      type: vector
      enabled: true
      config:
        dimension: 1536
        similarity: cosine
        topK: 5
  capabilities:
    - name: answer
      type: rag
      config:
        chunkSize: 512
        overlap: 50
        rerank: true
Model Context Protocol (MCP) Integration
# Start MCP server for AI assistant integration
mechano-mcp --config mcp-config.json

# Use from Python
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client

async with stdio_client(server_params) as (read, write):
    async with ClientSession(read, write) as session:
        await session.initialize()
        
        # Create and execute an agent
        await session.call_tool("create_agent", {
            "name": "assistant",
            "spec": {...}
        })
        
        result = await session.call_tool("execute_agent", {
            "agent_name": "assistant",
            "input": "Hello!"
        })

12 MCP Tools Available:

  • Agent Management: create_agent, list_agents, execute_agent, get_agent_state
  • Team Coordination: create_team, execute_team
  • Memory: query_memory, store_memory
  • Planning: create_plan, execute_plan
  • Monitoring: get_metrics, get_checkpoints

See MCP Documentation for complete guide.

📦 Official SDKs

Mechano provides official SDKs for 6 programming languages to easily integrate with the MCP server:

Language Package Installation Documentation
Python mechano-sdk pip install mechano-sdk Python SDK
Go mechano/sdk/go go get github.com/yasir2000/mechano/sdk/go Go SDK
Java mechano-sdk Maven/Gradle Java SDK
Rust mechano-sdk cargo add mechano-sdk Rust SDK
C# Mechano.SDK dotnet add package Mechano.SDK C# SDK
PHP mechano/sdk composer require mechano/sdk PHP SDK

Quick Example (Python):

from mechano_sdk import MechanoClient

client = MechanoClient()
agent = client.create_agent("Research Assistant", "researcher", ["web_search"])
result = client.execute_agent(agent.id, "Research quantum computing")

Quick Example (Go):

import mechano "github.com/yasir2000/mechano/sdk/go"

client := mechano.NewClient("http://localhost:3501")
agent, _ := client.CreateAgent(ctx, "Research Assistant", "researcher", 
    []string{"web_search"}, nil)

See SDK Documentation for comprehensive guides and examples.

📦 SDK Distribution

All SDKs are ready for distribution to their respective package managers.

Build Distributions

Linux/macOS:

chmod +x scripts/build-distributions.sh
./scripts/build-distributions.sh

Windows:

scripts\build-distributions.bat

This creates distribution packages in the dist/ directory:

  • Python: .whl and .tar.gz
  • Java: .jar, -sources.jar, -javadoc.jar
  • Rust: .crate
  • C#: .nupkg and .snupkg
  • PHP: .tar.gz

Publishing

See sdk/DISTRIBUTION.md for complete publishing instructions.

Quick publish (with credentials configured):

export PUBLISH_PYTHON=true
export PUBLISH_JAVA=true
export PUBLISH_RUST=true
export PUBLISH_CSHARP=true
./scripts/publish-distributions.sh

Distribution Resources

🏗️ Architecture

┌─────────────────────────────────────────────────────────────┐
│                    Your Applications                         │
└─────────────────────┬───────────────────────────────────────┘
                      │
                      ▼
┌─────────────────────────────────────────────────────────────┐
│                  Mechano Runtime Layer                       │
│  ┌──────────┐  ┌──────────┐  ┌──────────┐  ┌──────────┐   │
│  │ Agents   │  │ Planning │  │  Memory  │  │Reasoning │   │
│  └──────────┘  └──────────┘  └──────────┘  └──────────┘   │
└─────────────────────┬───────────────────────────────────────┘
                      │
                      ▼
┌─────────────────────────────────────────────────────────────┐
│                    Dapr Runtime                              │
│  ┌──────────┐  ┌──────────┐  ┌──────────┐  ┌──────────┐   │
│  │Service   │  │ Pub/Sub  │  │  State   │  │ Bindings │   │
│  │Invocation│  │          │  │Management│  │          │   │
│  └──────────┘  └──────────┘  └──────────┘  └──────────┘   │
└─────────────────────────────────────────────────────────────┘

🎨 Visual Identity

Mechano's branding is inspired by Dapr, featuring:

  • Colors: Blue (#0d6efd) → Purple (#6f42c1) gradient
  • Icon: ⚙️ Mechanical gear with neural network pattern
  • Typography: Modern, technical sans-serif (Inter)

See BRANDING.md for complete brand guidelines.

📖 Documentation

🧪 Testing

# Run all tests
make test

# Run specific test suite
go test ./test/e2e/...

# Run with coverage
make test-coverage

# Run benchmarks
make benchmark

🤝 Contributing

We welcome contributions! Please see our Contributing Guide for details.

Development Setup

# Clone repository
git clone https://github.com/yasir2000/mechano.git
cd mechano

# Install dependencies
go mod download

# Build
make build

# Run tests
make test

# Run linting
make lint

💖 Sponsor

Mechano is an open-source project that requires significant time and resources to maintain. Your sponsorship helps us:

  • 🚀 Develop new features faster
  • 🐛 Fix bugs and improve stability
  • 📚 Create better documentation
  • 🎓 Provide community support
  • 🔒 Maintain security updates

Sponsorship Tiers

🥉 Bronze

$10/month
✓ Sponsor badge
✓ Logo on README
✓ Priority support

🥈 Silver

$50/month
✓ All Bronze benefits
✓ Logo on website
✓ Feature requests

🥇 Gold

$250/month
✓ All Silver benefits
✓ Priority bug fixes
✓ Direct support channel

💎 Platinum

$1000/month
✓ All Gold benefits
✓ Custom features
✓ Dedicated support

Become a Sponsor on GitHub ❤️

Current Sponsors

Your Company

Become our first sponsor!

Other Ways to Support

  • Star this repository - Help us reach more developers
  • 🐦 Share on social media - Spread the word about Mechano
  • 📝 Write tutorials - Help others learn Mechano
  • 🐛 Report bugs - Help us improve quality
  • 💡 Suggest features - Shape the future of Mechano

📦 Ecosystem

Official Packages

Community

📊 Stats

GitHub stars GitHub forks GitHub watchers GitHub contributors GitHub last commit GitHub issues GitHub pull requests

📄 License

Mechano is licensed under the GNU Affero General Public License v3.0 (AGPL-3.0).

⚠️ PhD Research Project - Special Notice

This project, including all code, examples, documentation, and associated materials, is part of ongoing PhD research work and published academic papers.

ALL MATERIALS ARE PROTECTED BY COPYRIGHT AND ACADEMIC INTEGRITY REQUIREMENTS.

Restrictions

This work may NOT be copied, reproduced, distributed, modified, or reused in any form (including but not limited to: academic papers, research projects, commercial products, open-source projects, or derivative works) without the explicit written permission and discretion of the project owner.

Required for Any Use

Any use of this work in academic or commercial contexts requires:

  1. Explicit written authorization from the project owner
  2. Proper citation of all related publications
  3. Acknowledgment of the original research work
  4. Compliance with academic integrity standards

Legal Consequences

Unauthorized use, reproduction, or distribution may constitute:

  • Copyright infringement
  • Academic misconduct
  • Violation of intellectual property rights
  • Breach of research ethics

Contact

For permission requests, licensing inquiries, or collaboration opportunities, please contact the project owner yasirkaram@gmail.com Yasir Karam through the official repository.

© 2023-2025 All Rights Reserved. PhD Research Project.


🙏 Acknowledgments

  • Dapr - For the amazing distributed runtime
  • LangChain - For pioneering agent frameworks
  • CrewAI - For multi-agent coordination patterns
  • AutoGen - For conversation-driven agents

🔗 Links


Made with ❤️ by the Mechano community

Report BugRequest FeatureJoin Discord