-
Notifications
You must be signed in to change notification settings - Fork 74
/
Copy pathpage_handler.py
96 lines (78 loc) · 3.19 KB
/
page_handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import streamlit as st
import importlib.util
import json
from form_handler import FormHandler
# Utility to dynamically import modules
def load_module_from_path(module_name, file_path):
spec = importlib.util.spec_from_file_location(module_name, file_path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
return module
class PageHandler:
def __init__(self, config_file_path):
# Load the page configuration from JSON
with open(config_file_path, "r") as f:
self.pages = json.load(f)
def render_page(self, page_name: str):
# Check if the requested page exists in the JSON config
if page_name not in self.pages:
st.error("Page not found!")
return
page = self.pages[page_name]
page_title = page.get("page_title", "Untitled Page")
page_icon = page.get("page_icon", "📄") # Default to a generic icon
model_predict_file_path = page.get("model_predict_file_path")
form_config_path = page.get("form_config_path")
tabs = page.get("tabs", [])
# Set Streamlit's page config with the title and icon
st.set_page_config(page_title=page_title, page_icon=page_icon)
# Dynamically load the model prediction file
model_module = load_module_from_path(
f"{page_name}_model", model_predict_file_path
)
model_function = getattr(
model_module, "get_prediction", None
) # or relevant model function
# Create the tabs for the page
tab_objects = st.tabs([tab["name"] for tab in tabs])
# Iterate through the tabs to render them
for i, tab in enumerate(tabs):
with tab_objects[i]:
if tab["type"] == "form":
self.render_form(tab["form_name"], model_function, form_config_path)
elif tab["type"] == "model_details":
self.render_model_details(model_module,tabs[1])
def render_form(self, form_name: str, model_function, form_config_path: str):
form_handler = FormHandler(
name=form_name,
button_label="Predict",
model=model_function,
config_path=form_config_path,
)
# Render the form on the Streamlit page
form_handler.render()
def render_model_details(self, model_module,tab):
# Dynamically load and call the model details function
model_details_function = getattr(model_module, "model_details", None)
#mentioning the title of the problem statement
st.subheader("Problem Statement")
st.write(tab["problem_statement"])
#mentioning the title of the description
st.subheader("Model Description")
st.write(tab["description"])
if model_details_function:
metrics, prediction_plot, error_plot, performance_plot = model_details_function().evaluate()
st.subheader(f"Model Accuracy: {metrics['Test_R2']:.2f}")
#mentioning the title of the scores
st.subheader(f"Scores: Training: {metrics['Train_R2']:.2f}, Testing: {metrics['Test_R2']:.2f}")
# Display the scatter plot for predicted vs actual values
#used clear_figure to clear the plot once displayed to avoid conflict
if prediction_plot!=None:
st.subheader("Model Prediction Plot")
st.pyplot(prediction_plot, clear_figure=True)
if error_plot!=None:
st.subheader("Error Plot")
st.pyplot(error_plot, clear_figure=True)
if performance_plot!=None:
st.subheader("Model Performance Plot")
st.pyplot(performance_plot, clear_figure=True)