-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathDDQN_double_dqn.py
159 lines (147 loc) · 7.54 KB
/
DDQN_double_dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#!/usr/bin/python
# -*- coding: utf-8 -*-
# author: yao62995@gmail.com
from collections import deque
from common import *
class DDQN(Base):
"""
Double Deep Q-learning
ref:
paper "Deep Reinforcement Learning with Double Q-learning"
"""
def __init__(self, states_dim, actions_dim, action_range=(-1, 1), train_dir="./ddqn_models", gpu_id=0,
observe=1e3, replay_memory=5e4, update_frequency=1, train_repeat=1, frame_seq_num=1, gamma=0.99,
batch_size=64, learn_rate=1e-3, update_target_freq=64):
Base.__init__(self)
self.states_dim = states_dim
self.actions_dim = actions_dim
self.action_range = action_range
self.gpu_id = gpu_id
self.frame_seq_num = frame_seq_num
self.update_target_freq = update_target_freq
# init train params
self.observe = observe
self.update_frequency = update_frequency
self.train_repeat = train_repeat
self.gamma = gamma
# init replay memory deque
self.replay_memory_size = replay_memory
self.replay_memory = deque()
# init noise
self.explore_noise = OUNoise(self.actions_dim)
# train models dir
self.train_dir = train_dir
if not os.path.isdir(self.train_dir):
os.mkdir(self.train_dir)
# init network params
self.learn_rate = learn_rate
self.batch_size = batch_size
# tensorflow graph variables
self.sess = None
self.saver = None
self.global_step = None
self.ops = dict()
self.weight = {"q": [], 't': []}
self.bias = {"q": [], 't': []}
# build graph
self.build_graph()
# assign q-network to target network
self.update_target_network()
def append_params(self, scope_name, w, b):
self.weight[scope_name].append(w)
self.bias[scope_name].append(b)
def update_target_network(self):
for idx in xrange(len(self.weight["q"])):
self.sess.run(self.weight["t"][idx].assign(self.weight["q"][idx]))
for idx in xrange(len(self.bias["q"])):
self.sess.run(self.bias["t"][idx].assign(self.bias["q"][idx]))
def inference(self, variable_scope, state, weight_decay=None):
with tf.variable_scope(variable_scope) as scope:
self.ops[scope.name]["state"] = state
# conv layer 1 with max pool
conv1, w, b = conv2d(state, (8, 8, 3 * self.frame_seq_num, 32), "conv1", stride=2,
with_param=True, weight_decay=weight_decay)
pool1 = max_pool(conv1, ksize=2, stride=2, name="pool1")
self.append_params(scope.name, w, b)
# conv layer 2 with avg pool
conv2, w, b = conv2d(pool1, (3, 3, 32, 32), "conv2", stride=2, with_param=True, weight_decay=weight_decay)
self.append_params(scope.name, w, b)
pool2 = avg_pool(conv2, ksize=2, stride=2, name="pool2")
# reshape
flat1 = tf.reshape(pool2, (-1, 16 * 32), name="flat1")
# fc1
fc1, w, b = full_connect(flat1, (16 * 32, 256), "fc1", with_param=True, weight_decay=weight_decay)
self.append_params(scope.name, w, b)
# out
logits, w, b = full_connect(fc1, (256, self.action_num), "out", activate=None,
with_param=True, weight_decay=weight_decay)
self.append_params(scope.name, w, b)
return logits
def build_graph(self):
with tf.Graph().as_default(), tf.device('/gpu:%d' % self.gpu_id):
# set global step
self.global_step = tf.get_variable('global_step', [],
initializer=tf.constant_initializer(0), trainable=False)
# init q-network
state = tf.placeholder(tf.float32, shape=(None, 64, 64, 3 * self.frame_seq_num), name="state")
logits = self.inference("q", state, weight_decay=1e-2)
# loss
action = tf.placeholder(tf.float32, shape=(None, self.actions_dim), name="action")
q_target = tf.placeholder(tf.float32, shape=(None), name="q_target")
l2_loss = tf.add_n(tf.get_collection("losses"))
q_loss = tf.reduce_mean(tf.square(tf.reduce_mean(tf.mul(logits, action), reduction_indices=1) - q_target))
total_loss = q_loss + l2_loss
# optimizer
train_opt = tf.train.AdamOptimizer(self.learn_rate).minimize(total_loss, global_step=self.global_step)
# init target q-network
state2 = tf.placeholder(tf.float32, shape=(None, 64, 64, 3 * self.frame_seq_num), name="target_state")
logits2 = self.inference("t", state2)
# init session and saver
self.saver = tf.train.Saver(max_to_keep=5)
self.sess = tf.Session(config=tf.ConfigProto(
allow_soft_placement=True,
log_device_placement=False)
)
self.sess.run(tf.initialize_all_variables())
# restore model
restore_model(self.sess, self.train_dir, self.saver)
# some ops
self.ops["logits"] = lambda obs: self.sess.run([logits], feed_dict={state: obs})
self.ops["logits_target"] = lambda obs: self.sess.run([logits2], feed_dict={state2: obs})
self.ops["train_q"] = lambda obs, act, q_t: self.sess.run([train_opt, total_loss, self.global_step],
feed_dict={state: obs, action: act, q_target: q_t})
def get_action(self, state, with_noise=False):
action = self.ops["logits"]([state])[0][0]
if with_noise:
action = np.clip(action + self.explore_noise.noise(), self.action_range[0], self.action_range[1])
return action
def feedback(self, state, action, reward, terminal, state_n):
self.time_step += 1
self.replay_memory.append((state, action, reward, terminal, state_n))
if len(self.replay_memory) > self.replay_memory_size:
self.replay_memory.popleft()
if self.time_step > self.observe and self.time_step % self.update_frequency == 0:
for _ in xrange(self.train_repeat):
# train mini-batch from replay memory
mini_batch = random.sample(self.replay_memory, self.batch_size)
batch_state, batch_action = [], []
batch_target_q = []
for batch_i, sample in enumerate(mini_batch):
b_state, b_action, b_reward, b_terminal, b_state_n = sample
if b_terminal:
target_q = b_reward
else: # compute target q values
target_q = b_reward + self.gamma * np.max(self.ops["logits_target"]([b_state_n]))
batch_state.append(b_state)
batch_action.append(b_action)
batch_target_q.append(target_q)
# update actor network (theta_p)
_, p_loss = self.ops["train_p"](batch_state)
# update critic network (theta_q)
_, global_step, q_loss = self.ops["train_q"](batch_state, batch_action, batch_target_q)
if self.time_step % 1e3 == 0:
logger.info("step=%d, p_loss=%.6f, q_loss=%.6f" % (global_step, p_loss, q_loss))
if self.time_step % self.update_target_freq == 0:
self.update_target_network()
if self.time_step % 3e4 == 0:
save_model(self.sess, self.train_dir, self.saver, "ddqn-", global_step=self.global_step)