-
Notifications
You must be signed in to change notification settings - Fork 35
/
train_nets.py
293 lines (249 loc) · 15.5 KB
/
train_nets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
# -*- coding: utf-8 -*-
# /usr/bin/env/python3
'''
Tensorflow implementation for MobileFaceNet.
Author: aiboy.wei@outlook.com .
'''
from utils.data_process import load_data, next_batch
import nets.TinyMobileFaceNet as TinyMobileFaceNet
import nets.MobileFaceNet as MobileFaceNet
from losses.face_losses import cos_loss, triplet_loss
from verification import evaluate
from scipy.optimize import brentq
from utils.common import train
from scipy import interpolate
from datetime import datetime
from sklearn import metrics
import tensorflow as tf
import numpy as np
import argparse
import time
import os
slim = tf.contrib.slim
def get_parser():
parser = argparse.ArgumentParser(description='parameters to train net')
parser.add_argument('--max_epoch', default=20, help='epoch to train the network')
parser.add_argument('--image_size', default=[112, 112], help='the image size')
parser.add_argument('--num_output', default=85164, help='the train images number')
parser.add_argument('--embedding_size', type=int,
help='Dimensionality of the embedding.', default=128)
parser.add_argument('--weight_decay', default=5e-5, help='L2 weight regularization.')
parser.add_argument('--lr_schedule', help='Number of epochs for learning rate piecewise.', default=[1, 4, 6, 8])
parser.add_argument('--train_batch_size', default=200, help='batch size to train network')
parser.add_argument('--test_batch_size', type=int,
help='Number of images to process in a batch in the test set.', default=100)
parser.add_argument('--eval_datasets', default=['lfw', 'cfp_ff', 'cfp_fp', 'agedb_30'], help='evluation datasets')
parser.add_argument('--eval_db_path', default='./datasets/faces_ms1m_112x112', help='evluate datasets base path')
parser.add_argument('--eval_nrof_folds', type=int,
help='Number of folds to use for cross validation. Mainly used for testing.', default=10)
parser.add_argument('--tfrecords_file_path', default='./datasets/tfrecords', type=str,
help='path to the output of tfrecords file path')
parser.add_argument('--summary_path', default='./output/summary', help='the summary file save path')
parser.add_argument('--ckpt_path', default='./output/ckpt', help='the ckpt file save path')
parser.add_argument('--ckpt_best_path', default='./output/ckpt_best', help='the best ckpt file save path')
parser.add_argument('--log_file_path', default='./output/logs', help='the ckpt file save path')
parser.add_argument('--saver_maxkeep', default=20, help='tf.train.Saver max keep ckpt files')
parser.add_argument('--buffer_size', default=10000, help='tf dataset api buffer size')
parser.add_argument('--summary_interval', default=400, help='interval to save summary')
parser.add_argument('--ckpt_interval', default=2000, help='intervals to save ckpt file')
parser.add_argument('--validate_interval', default=2000, help='intervals to save ckpt file')
parser.add_argument('--show_info_interval', default=20, help='intervals to save ckpt file')
parser.add_argument('--pretrained_model', type=str, default='',
help='Load a pretrained model before training starts.')
parser.add_argument('--model_type', default=0, help='MobileFaceNet or TinyMobileFaceNet')
parser.add_argument('--optimizer', type=str, choices=['ADAGRAD', 'ADADELTA', 'ADAM', 'RMSPROP', 'MOM'],
help='The optimization algorithm to use', default='ADAM')
parser.add_argument('--log_device_mapping', default=False, help='show device placement log')
parser.add_argument('--moving_average_decay', type=float,
help='Exponential decay for tracking of training parameters.', default=0.999)
parser.add_argument('--log_histograms',
help='Enables logging of weight/bias histograms in tensorboard.', action='store_true')
parser.add_argument('--prelogits_norm_loss_factor', type=float,
help='Loss based on the norm of the activations in the prelogits layer.', default=5e-5)
parser.add_argument('--prelogits_norm_p', type=float,
help='Norm to use for prelogits norm loss.', default=1.0)
args = parser.parse_args()
return args
if __name__ == '__main__':
with tf.Graph().as_default():
os.environ["CUDA_VISIBLE_DEVICES"] = "3"
args = get_parser()
# create log dir
subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')
log_dir = os.path.join(os.path.expanduser(args.log_file_path), subdir)
if not os.path.isdir(log_dir): # Create the log directory if it doesn't exist
os.makedirs(log_dir)
# define global parameters
global_step = tf.Variable(name='global_step', initial_value=0, trainable=False)
epoch = tf.Variable(name='epoch', initial_value=-1, trainable=False)
# define placeholder
# inputs = tf.placeholder(name='img_inputs', shape=[None, *args.image_size, 3], dtype=tf.float32)
inputs = tf.placeholder(name='img_inputs',
shape=[None, args.image_size[0], args.image_size[1], 3],
dtype=tf.float32)
labels = tf.placeholder(name='img_labels', shape=[None, ], dtype=tf.int64)
phase_train_placeholder = tf.placeholder_with_default(tf.constant(False, dtype=tf.bool), shape=None, name='phase_train')
img_batch, label_batch = next_batch(batch_size=args.train_batch_size,
pattern=os.path.join(args.tfrecords_file_path, 'tran.tfrecords'))
# prepare validate datasets
ver_list = []
ver_name_list = []
for db in args.eval_datasets:
print('begin db %s convert.' % db)
data_set = load_data(db, args.image_size, args)
ver_list.append(data_set)
ver_name_list.append(db)
# pretrained model path
pretrained_model = None
if args.pretrained_model:
pretrained_model = os.path.expanduser(args.pretrained_model)
print('Pre-trained model: %s' % pretrained_model)
# identity the input, for inference
inputs = tf.identity(inputs, 'input')
w_init_method = slim.initializers.xavier_initializer()
if args.model_type == 0:
prelogits, net_points = MobileFaceNet.inference(images=inputs,
phase_train=phase_train_placeholder,
weight_decay=args.weight_decay)
else:
prelogits, net_points = TinyMobileFaceNet.inference(images=inputs,
phase_train=phase_train_placeholder,
weight_decay=args.weight_decay)
# record the network architecture
hd = open("./arch/txt/MobileFaceNet_Arch.txt", 'w')
for key in net_points.keys():
info = '{}:{}\n'.format(key, net_points[key].get_shape().as_list())
hd.write(info)
hd.close()
embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings')
# Norm for the prelogits
eps = 1e-4
prelogits_norm = tf.reduce_mean(tf.norm(tf.abs(prelogits) + eps, ord=args.prelogits_norm_p, axis=1))
tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, prelogits_norm * args.prelogits_norm_loss_factor)
inference_loss, logit = cos_loss(prelogits, labels, args.num_output)
# inference_loss, logit = triplet_loss(prelogits, labels, args.num_output, margin=0.5)
tf.add_to_collection('losses', inference_loss)
# total losses
regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
total_loss = tf.add_n([inference_loss] + regularization_losses, name='total_loss')
# define the learning rate schedule
learning_rate = tf.train.piecewise_constant(epoch,
boundaries=args.lr_schedule,
values=[0.1, 0.01, 0.001, 0.0001, 0.00001],
name='lr_schedule')
# define sess
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.9)
config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=args.log_device_mapping, gpu_options=gpu_options)
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
# calculate accuracy
pred = tf.nn.softmax(logit)
correct_prediction = tf.cast(tf.equal(tf.argmax(pred, 1), tf.cast(labels, tf.int64)), tf.float32)
Accuracy_Op = tf.reduce_mean(correct_prediction)
# summary writer
summary = tf.summary.FileWriter(args.summary_path, sess.graph)
summaries = []
# add train info to tensorboard summary
summaries.append(tf.summary.scalar('inference_loss', inference_loss))
summaries.append(tf.summary.scalar('total_loss', total_loss))
summaries.append(tf.summary.scalar('leraning_rate', learning_rate))
summary_op = tf.summary.merge(summaries)
# train op
train_op = train(total_loss, global_step, args.optimizer, learning_rate, args.moving_average_decay,
tf.global_variables(), summaries, args.log_histograms)
inc_global_step_op = tf.assign_add(global_step, 1, name='increment_global_step')
inc_epoch_op = tf.assign_add(epoch, 1, name='increment_epoch')
# record trainable variable
hd = open("./arch/txt/trainable_var.txt", "w")
for var in tf.trainable_variables():
hd.write(str(var))
hd.write('\n')
hd.close()
# saver to load pretrained model or save model
# MobileFaceNet_vars = [v for v in tf.trainable_variables() if v.name.startswith('MobileFaceNet')]
saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=args.saver_maxkeep)
# init all variables
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
# load pretrained model
if pretrained_model:
print('Restoring pretrained model: %s' % pretrained_model)
ckpt = tf.train.get_checkpoint_state(pretrained_model)
print(ckpt)
saver.restore(sess, ckpt.model_checkpoint_path)
# output file path
if not os.path.exists(args.log_file_path):
os.makedirs(args.log_file_path)
if not os.path.exists(args.ckpt_best_path):
os.makedirs(args.ckpt_best_path)
total_accuracy = {}
_ = sess.run(inc_epoch_op)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess, coord)
for i in range(args.max_epoch):
# sess.run(iterator.initializer)
count = 0
while True:
try:
images_train, labels_train = sess.run([img_batch, label_batch])
feed_dict = {inputs: images_train, labels: labels_train, phase_train_placeholder: True}
start = time.time()
_, total_loss_val, inference_loss_val, reg_loss_val, _, acc_val = \
sess.run([train_op, total_loss, inference_loss, regularization_losses, inc_global_step_op,
Accuracy_Op],
feed_dict=feed_dict)
end = time.time()
pre_sec = args.train_batch_size/(end - start)
count += 1
# print training information
if count > 0 and count % args.show_info_interval == 0:
print('epoch %d, total_step %d, total loss is %.2f , inference loss is %.2f, reg_loss is %.2f, '
'training accuracy is %.6f, time %.3f samples/sec' %
(i, count, total_loss_val, inference_loss_val, np.sum(reg_loss_val), acc_val, pre_sec))
# save summary
if count > 0 and count % args.summary_interval == 0:
feed_dict = {inputs: images_train, labels: labels_train, phase_train_placeholder: True}
summary_op_val = sess.run(summary_op, feed_dict=feed_dict)
summary.add_summary(summary_op_val, count)
# save ckpt files
if count > 0 and count % args.ckpt_interval == 0:
filename = 'MobileFaceNet_epoch_{:d}_iter_{:d}'.format(i, count) + '.ckpt'
filename = os.path.join(args.ckpt_path, filename)
saver.save(sess, filename)
# validate
if count > 0 and count % args.validate_interval == 0:
print('\nIteration', count, 'testing...')
for ver_step in range(len(ver_list)):
start_time = time.time()
data_sets, issame_list = ver_list[ver_step]
emb_array = np.zeros((data_sets.shape[0], args.embedding_size))
nrof_batches = data_sets.shape[0] // args.test_batch_size
for index in range(nrof_batches): # actual is same multiply 2, test data total
start_index = index * args.test_batch_size
end_index = min((index + 1) * args.test_batch_size, data_sets.shape[0])
feed_dict = {inputs: data_sets[start_index:end_index, ...], phase_train_placeholder: False}
emb_array[start_index:end_index, :] = sess.run(embeddings, feed_dict=feed_dict)
duration = time.time() - start_time
tpr, fpr, accuracy, val, val_std, far = evaluate(emb_array, issame_list, nrof_folds=args.eval_nrof_folds)
print("total time %.3f to evaluate %d images of %s" % (duration, data_sets.shape[0], ver_name_list[ver_step]))
print('Accuracy: %1.3f+-%1.3f' % (np.mean(accuracy), np.std(accuracy)))
print('fpr and tpr: %1.3f %1.3f' % (np.mean(fpr, 0), np.mean(tpr, 0)))
print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far))
auc = metrics.auc(fpr, tpr)
print('Area Under Curve (AUC): %1.3f' % auc)
eer = brentq(lambda x: 1. - x - interpolate.interp1d(fpr, tpr)(x), 0., 1.)
print('Equal Error Rate (EER): %1.3f\n' % eer)
with open(os.path.join(log_dir, '{}_result.txt'.format(ver_name_list[ver_step])), 'at') as f:
f.write('%d\t%.5f\t%.5f\n' % (count, np.mean(accuracy), val))
if ver_name_list == 'lfw' and np.mean(accuracy) > 0.992:
print('best accuracy is %.5f' % np.mean(accuracy))
filename = 'MobileFaceNet_best.ckpt'
filename = os.path.join(args.ckpt_best_path, filename)
saver.save(sess, filename)
if count > 0 and args.train_batch_size * count > 3804846:
break
except tf.errors.OutOfRangeError:
print("End of epoch %d" % i)
break
coord.request_stop()
coord.join(threads)