forked from tensorflow/hub
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tensor_info_test.py
155 lines (128 loc) · 5.33 KB
/
tensor_info_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Copyright 2018 The TensorFlow Hub Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for tensorflow_hub.tensor_info."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from tensorflow_hub import tensor_info
def _make_signature(inputs, outputs, name=None):
input_info = {
input_name: tf.saved_model.utils.build_tensor_info(tensor)
for input_name, tensor in inputs.items()
}
output_info = {
output_name: tf.saved_model.utils.build_tensor_info(tensor)
for output_name, tensor in outputs.items()
}
return tf.saved_model.signature_def_utils.build_signature_def(
input_info, output_info, name)
class TensorInfoTest(tf.test.TestCase):
def testParsingTensorInfoProtoMaps(self):
sig = _make_signature({
"x": tf.placeholder(tf.string, [2]),
}, {
"y": tf.placeholder(tf.int32, [2]),
"z": tf.sparse_placeholder(tf.float32, [2, 10]),
})
inputs = tensor_info.parse_tensor_info_map(sig.inputs)
self.assertEquals(set(inputs.keys()), set(["x"]))
self.assertEquals(inputs["x"].get_shape(), [2])
self.assertEquals(inputs["x"].dtype, tf.string)
self.assertFalse(inputs["x"].is_sparse)
outputs = tensor_info.parse_tensor_info_map(sig.outputs)
self.assertEquals(set(outputs.keys()), set(["y", "z"]))
self.assertEquals(outputs["y"].get_shape(), [2])
self.assertEquals(outputs["y"].dtype, tf.int32)
self.assertFalse(outputs["y"].is_sparse)
self.assertEquals(outputs["z"].get_shape(), [2, 10])
self.assertEquals(outputs["z"].dtype, tf.float32)
self.assertTrue(outputs["z"].is_sparse)
def testRepr(self):
sig = _make_signature({
"x": tf.placeholder(tf.string, [2]),
}, {
"y": tf.placeholder(tf.int32, [2]),
"z": tf.sparse_placeholder(tf.float32, [2, 10]),
})
outputs = tensor_info.parse_tensor_info_map(sig.outputs)
self.assertEquals(
repr(outputs["y"]),
"<hub.ParsedTensorInfo shape=(2,) dtype=int32 is_sparse=False>")
self.assertEquals(
repr(outputs["z"]),
"<hub.ParsedTensorInfo shape=(2, 10) dtype=float32 is_sparse=True>")
def testMatchingTensorInfoProtoMaps(self):
sig1 = _make_signature({
"x": tf.placeholder(tf.int32, [2]),
}, {
"x": tf.placeholder(tf.int32, [2]),
})
sig2 = _make_signature({
"x": tf.placeholder(tf.int32, [2]),
}, {
"x": tf.sparse_placeholder(tf.int64, [2]),
})
self.assertTrue(
tensor_info.tensor_info_proto_maps_match(sig1.inputs, sig2.inputs))
self.assertFalse(
tensor_info.tensor_info_proto_maps_match(sig1.outputs, sig2.outputs))
sig3 = _make_signature({
"x": tf.placeholder(tf.int32, [None]),
}, {
"x": tf.placeholder(tf.int32, [2]),
})
self.assertFalse(
tensor_info.tensor_info_proto_maps_match(sig1.inputs, sig3.inputs))
self.assertTrue(
tensor_info.tensor_info_proto_maps_match(sig1.outputs, sig3.outputs))
def testBuildInputMap(self):
x = tf.placeholder(tf.int32, [2])
y = tf.sparse_placeholder(tf.string, [None])
sig = _make_signature({"x": x, "y": y}, {})
input_map = tensor_info.build_input_map(sig.inputs, {"x": x, "y": y})
self.assertEquals(len(input_map), 4)
self.assertEquals(input_map[x.name], x)
self.assertEquals(input_map[y.indices.name], y.indices)
self.assertEquals(input_map[y.values.name], y.values)
self.assertEquals(input_map[y.dense_shape.name], y.dense_shape)
def testBuildOutputMap(self):
x = tf.placeholder(tf.int32, [2])
y = tf.sparse_placeholder(tf.string, [None])
sig = _make_signature({}, {"x": x, "y": y})
def _get_tensor(name):
return tf.get_default_graph().get_tensor_by_name(name)
output_map = tensor_info.build_output_map(sig.outputs, _get_tensor)
self.assertEquals(len(output_map), 2)
self.assertEquals(output_map["x"], x)
self.assertEquals(output_map["y"].indices, y.indices)
self.assertEquals(output_map["y"].values, y.values)
self.assertEquals(output_map["y"].dense_shape, y.dense_shape)
def testConvertTensors(self):
a = tf.placeholder(tf.int32, [None])
protomap = _make_signature({"a": a}, {}).inputs
# convert constant
in0 = [1, 2, 3]
output = tensor_info.convert_to_input_tensors(protomap, {"a": in0})
self.assertEquals(output["a"].dtype, a.dtype)
# check sparsity
in1 = tf.sparse_placeholder(tf.int32, [])
with self.assertRaisesRegexp(TypeError, "dense"):
tensor_info.convert_to_input_tensors(protomap, {"a": in1})
# check args mismatch
with self.assertRaisesRegexp(TypeError, "missing"):
tensor_info.convert_to_input_tensors(protomap, {"b": in1})
if __name__ == "__main__":
tf.test.main()