forked from tensorflow/hub
-
Notifications
You must be signed in to change notification settings - Fork 0
/
module_test.py
266 lines (214 loc) · 9.17 KB
/
module_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# Copyright 2018 The TensorFlow Hub Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Unit tests for tensorflow_hub.module."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from tensorflow_hub import module
from tensorflow_hub import module_impl
from tensorflow_hub import module_spec
from tensorflow_hub import tensor_info
class TestConvertInputsOutputs(tf.test.TestCase):
def testSingleInput(self):
inputs_info = {
"x": tensor_info.ParsedTensorInfo(
tf.float32,
tf.TensorShape([None]),
is_sparse=False),
}
def _check(dict_inputs):
self.assertEqual(len(dict_inputs), 1)
self.assertEqual(dict_inputs["x"].dtype, tf.float32)
self.assertTrue(dict_inputs["x"].shape.is_compatible_with([None]))
_check(module._prepare_dict_inputs([1, 2], inputs_info))
_check(module._prepare_dict_inputs({"x": [1, 2]}, inputs_info))
with self.assertRaisesRegexp(TypeError, r"missing \['x'\]"):
module._prepare_dict_inputs(None, inputs_info)
with self.assertRaisesRegexp(TypeError, r"extra given \['y'\]"):
module._prepare_dict_inputs({"x": [1, 2], "y": [1, 2]}, inputs_info)
def testNoInputs(self):
self.assertEqual(module._prepare_dict_inputs(None, {}), {})
self.assertEqual(module._prepare_dict_inputs({}, {}), {})
with self.assertRaisesRegexp(TypeError, "expects no inputs"):
module._prepare_dict_inputs([None], {})
with self.assertRaisesRegexp(TypeError, "expects no inputs"):
module._prepare_dict_inputs(1, {})
with self.assertRaisesRegexp(TypeError, r"extra given \['x'\]"):
module._prepare_dict_inputs({"x": 1}, {})
def testMultipleInputs(self):
inputs_info = {
"x": tensor_info.ParsedTensorInfo(
tf.float32,
tf.TensorShape([None]),
is_sparse=False),
"y": tensor_info.ParsedTensorInfo(
tf.float32,
tf.TensorShape([None]),
is_sparse=False),
}
def _check(dict_inputs):
self.assertEqual(len(dict_inputs), 2)
for key in ("x", "y"):
self.assertEqual(dict_inputs[key].dtype, tf.float32)
self.assertTrue(dict_inputs[key].shape.is_compatible_with([None]))
_check(module._prepare_dict_inputs({"x": [1, 2], "y": [1, 2]},
inputs_info))
with self.assertRaisesRegexp(TypeError, r"missing \['x', 'y'\]"):
module._prepare_dict_inputs(None, inputs_info)
with self.assertRaisesRegexp(TypeError, r"missing \['x', 'y'\]"):
module._prepare_dict_inputs({}, inputs_info)
with self.assertRaisesRegexp(TypeError, r"missing \['x', 'y'\]"):
module._prepare_dict_inputs({"z": 1}, inputs_info)
with self.assertRaisesRegexp(
TypeError, "Signature expects multiple inputs. Use a dict."):
module._prepare_dict_inputs(1, inputs_info)
def testOutputWithDefault(self):
outputs = {"default": "result", "extra": "dbg info"}
self.assertEquals(module._prepare_outputs(outputs, as_dict=False), "result")
self.assertEquals(module._prepare_outputs(outputs, as_dict=True), outputs)
def testDictOutput(self):
outputs = {"x": 1, "y": 2}
self.assertEquals(module._prepare_outputs(outputs, as_dict=True), outputs)
with self.assertRaisesRegexp(TypeError, r"Use as_dict=True."):
self.assertEquals(module._prepare_outputs(outputs, as_dict=False),
outputs)
class GetStateScopeTest(tf.test.TestCase):
def testGetStateScope(self):
self.assertEqual(module._try_get_state_scope("a"), "a/")
self.assertEqual(module._try_get_state_scope("a"), "a_1/")
def testGetStateScope_UsesVariableScope(self):
self.assertEqual(module._try_get_state_scope("a"), "a/")
with tf.variable_scope(None, default_name="a") as vs:
self.assertEqual(vs.name, "a_1")
def testGetStateScope_UsesNameScope(self):
self.assertEqual(module._try_get_state_scope("a"), "a/")
with tf.name_scope("a") as ns:
self.assertEqual(ns, "a_1/")
def testGetStateScope_UnusedNameScope(self):
self.assertEqual(module._try_get_state_scope("a", False), "a/")
with tf.name_scope("a") as ns:
self.assertEqual(ns, "a/")
self.assertEqual(module._try_get_state_scope("a", False), "a_1/")
with tf.name_scope("a") as ns:
self.assertEqual(ns, "a_1/")
def testGetStateScope_AlreadyUsedNameScope(self):
with tf.name_scope("a"):
pass
with self.assertRaisesRegexp(RuntimeError, "name_scope was already taken"):
module._try_get_state_scope("a", False)
def testGetStateScopeWithActiveScopes(self):
with tf.Graph().as_default():
with tf.name_scope("foo"):
abs_scope = module._try_get_state_scope("a", False)
self.assertEqual(abs_scope, "a/")
with tf.name_scope(abs_scope) as ns:
self.assertEqual(ns, "a/")
with tf.Graph().as_default():
with tf.variable_scope("vs"):
self.assertEqual(module._try_get_state_scope("a", False), "vs/a/")
with tf.name_scope(name="a") as ns:
self.assertEqual(ns, "vs/a/")
with tf.Graph().as_default():
with tf.name_scope("foo"):
with tf.variable_scope("vs"):
self.assertEquals(module._try_get_state_scope("a", False), "vs/a/")
class _ModuleSpec(module_spec.ModuleSpec):
def get_tags(self):
return [set(), set(["special"])]
def get_signature_names(self, tags=None):
if tags == set(["special"]):
return iter(["default", "extra"])
else:
return iter(["default"])
def get_input_info_dict(self, signature=None, tags=None):
result = {
"x": tensor_info.ParsedTensorInfo(
tf.float32,
tf.TensorShape([None]),
is_sparse=False),
}
if tags == set(["special"]) and signature == "extra":
result["y"] = result["x"]
return result
def get_output_info_dict(self, signature=None, tags=None):
result = {
"default": tensor_info.ParsedTensorInfo(
tf.float32,
tf.TensorShape([None]),
is_sparse=False),
}
if tags == set(["special"]) and signature == "extra":
result["z"] = result["default"]
return result
def _create_impl(self, name, trainable, tags):
return _ModuleImpl(name, trainable)
# native_module_test.py covers setting and getting attached messages.
def _get_attached_bytes(self, key, tags):
del key, tags # Unused.
return None
class _ModuleImpl(module_impl.ModuleImpl):
def __init__(self, name, trainable):
super(_ModuleImpl, self).__init__()
with tf.variable_scope(name):
pass
def create_apply_graph(self, signature, inputs, name):
with tf.name_scope(name):
result = {"default": 2 * inputs["x"]}
if signature == "extra":
result["z"] = 2 * inputs["x"] + 3 * inputs["y"]
return result
def export(self, path, session):
raise NotImplementedError()
@property
def variable_map(self):
raise NotImplementedError()
class ModuleTest(tf.test.TestCase):
def testModuleSingleInput(self):
m = module.Module(_ModuleSpec())
result = m([1, 2])
with tf.Session() as session:
self.assertAllEqual(session.run(result), [2, 4])
def testModuleDictInput(self):
m = module.Module(_ModuleSpec())
result = m({"x": [1, 2]})
with tf.Session() as session:
self.assertAllEqual(session.run(result), [2, 4])
def testModuleDictOutput(self):
m = module.Module(_ModuleSpec())
result = m([1, 2], as_dict=True)
self.assertTrue(isinstance(result, dict))
self.assertAllEqual(list(result.keys()), ["default"])
def testModuleInNestedScope(self):
with tf.variable_scope("foo"):
m = module.Module(_ModuleSpec())
result = m([1, 2])
with tf.Session() as session:
self.assertAllEqual(session.run(result), [2, 4])
def testModuleInterfaceGettersDefaultSignatureAndTags(self):
m = module.Module(_ModuleSpec())
self.assertItemsEqual(m.get_signature_names(), ["default"])
self.assertItemsEqual(m.get_input_info_dict().keys(), ["x"])
self.assertItemsEqual(m.get_output_info_dict().keys(), ["default"])
def testModuleInterfaceGettersExplicitSignatureAndTags(self):
"""Tests that tags from Module(...) apply to module.get_*()."""
m = module.Module(_ModuleSpec(), tags={"special"})
self.assertItemsEqual(m.get_signature_names(), ["default", "extra"])
self.assertItemsEqual(m.get_input_info_dict(signature="extra").keys(),
["x", "y"])
self.assertItemsEqual(m.get_output_info_dict(signature="extra").keys(),
["z", "default"])
if __name__ == "__main__":
tf.test.main()