You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
How many epochs was the Transpose hA4 pre-trained model fine-tuned on the MPII dataset to get to the benchmarks in the paper?
I am using: the following parameters similar to the paper. but on a dataset with 10K images here
model_tp = torch.hub.load('yangsenius/TransPose:main',
'tph_a4_256x192',
pretrained=True)
model_tp.final_layer = torch.nn.Sequential(torch.nn.Conv2d(96, 18, kernel_size=1))
#Load parameters
model = model_tp.to(device)
pretrain_part = [param for name, param in model.named_parameters()if 'final_layer' not in name]
optimizer = torch.optim.Adam([ {'params': pretrain_part, 'lr':1e-5 },
{'params': model.final_layer.parameters(), 'lr': 1e-4}])
criterion = torch.nn.MSELoss(reduction="mean")
Any suggestion to improve would be helpful this situation. Thanks
I am training trying to fine-tune it but the loss doesn't decrease:
Training model
Epoch:0, loss2.804723664186895, time taken:539.878s
Epoch:1, loss2.263692114269361, time taken:542.564s
Epoch:2, loss1.8802592728752643, time taken:542.661s
Epoch:3, loss1.5531523590907454, time taken:543.041s
Epoch:4, loss1.3379272652091458, time taken:543.445s
Epoch:5, loss1.1180460024625063, time taken:538.449s
Epoch:6, loss0.9673018065514043, time taken:534.550s
Epoch:7, loss0.8572808737517335, time taken:538.618s
Epoch:8, loss0.7790990431094542, time taken:535.940s
Epoch:9, loss0.7243237162474543, time taken:536.291s
Epoch:10, loss0.6794152171351016, time taken:535.745s
Epoch:11, loss0.6420647234190255, time taken:532.800s
Epoch:12, loss0.6094503253116272, time taken:531.308s
Epoch:13, loss0.5824214839958586, time taken:530.418s
Epoch:14, loss0.5580684408778325, time taken:530.618s
Epoch:15, loss0.538073766452726, time taken:531.255s
Epoch:16, loss0.5198041790281422, time taken:531.875s
Epoch:17, loss0.5046796562382951, time taken:529.682s
Epoch:18, loss0.49001771898474544, time taken:529.585s
Epoch:19, loss0.4768067048571538, time taken:530.031s
Epoch:20, loss0.46674167667515576, time taken:534.574s
Epoch:21, loss0.45518148655537516, time taken:532.242s
Epoch:22, loss0.4449854488193523, time taken:532.336s
Epoch:23, loss0.4369037283177022, time taken:533.899s
Epoch:24, loss0.4278696861874778, time taken:532.454s
Epoch:25, loss0.4207416394201573, time taken:538.248s
Epoch:26, loss0.41212902366532944, time taken:541.508s
Epoch:27, loss0.4052599307906348, time taken:540.419s
Epoch:28, loss0.3998840279818978, time taken:541.615s
Epoch:29, loss0.3926734702545218, time taken:541.612s
Epoch:30, loss0.3866453653026838, time taken:541.235s
Epoch:31, loss0.38077057831105776, time taken:540.944s
Epoch:32, loss0.37572325009386986, time taken:540.582s
Epoch:33, loss0.3709150122012943, time taken:540.616s
Epoch:34, loss0.36646912069409154, time taken:540.807s
Epoch:35, loss0.3614582328009419, time taken:541.298s
Epoch:36, loss0.35673171386588365, time taken:537.836s
Epoch:37, loss0.3524343741883058, time taken:538.538s
Epoch:38, loss0.34845523245166987, time taken:539.272s
The text was updated successfully, but these errors were encountered:
How many epochs was the Transpose hA4 pre-trained model fine-tuned on the MPII dataset to get to the benchmarks in the paper?
I am using: the following parameters similar to the paper. but on a dataset with 10K images here
model_tp = torch.hub.load('yangsenius/TransPose:main',
'tph_a4_256x192',
pretrained=True)
model_tp.final_layer = torch.nn.Sequential(torch.nn.Conv2d(96, 18, kernel_size=1))
#Load parameters
model = model_tp.to(device)
pretrain_part = [param for name, param in model.named_parameters()if 'final_layer' not in name]
optimizer = torch.optim.Adam([ {'params': pretrain_part, 'lr':1e-5 },
{'params': model.final_layer.parameters(), 'lr': 1e-4}])
criterion = torch.nn.MSELoss(reduction="mean")
Any suggestion to improve would be helpful this situation. Thanks
I am training trying to fine-tune it but the loss doesn't decrease:
Training model
Epoch:0, loss2.804723664186895, time taken:539.878s
Epoch:1, loss2.263692114269361, time taken:542.564s
Epoch:2, loss1.8802592728752643, time taken:542.661s
Epoch:3, loss1.5531523590907454, time taken:543.041s
Epoch:4, loss1.3379272652091458, time taken:543.445s
Epoch:5, loss1.1180460024625063, time taken:538.449s
Epoch:6, loss0.9673018065514043, time taken:534.550s
Epoch:7, loss0.8572808737517335, time taken:538.618s
Epoch:8, loss0.7790990431094542, time taken:535.940s
Epoch:9, loss0.7243237162474543, time taken:536.291s
Epoch:10, loss0.6794152171351016, time taken:535.745s
Epoch:11, loss0.6420647234190255, time taken:532.800s
Epoch:12, loss0.6094503253116272, time taken:531.308s
Epoch:13, loss0.5824214839958586, time taken:530.418s
Epoch:14, loss0.5580684408778325, time taken:530.618s
Epoch:15, loss0.538073766452726, time taken:531.255s
Epoch:16, loss0.5198041790281422, time taken:531.875s
Epoch:17, loss0.5046796562382951, time taken:529.682s
Epoch:18, loss0.49001771898474544, time taken:529.585s
Epoch:19, loss0.4768067048571538, time taken:530.031s
Epoch:20, loss0.46674167667515576, time taken:534.574s
Epoch:21, loss0.45518148655537516, time taken:532.242s
Epoch:22, loss0.4449854488193523, time taken:532.336s
Epoch:23, loss0.4369037283177022, time taken:533.899s
Epoch:24, loss0.4278696861874778, time taken:532.454s
Epoch:25, loss0.4207416394201573, time taken:538.248s
Epoch:26, loss0.41212902366532944, time taken:541.508s
Epoch:27, loss0.4052599307906348, time taken:540.419s
Epoch:28, loss0.3998840279818978, time taken:541.615s
Epoch:29, loss0.3926734702545218, time taken:541.612s
Epoch:30, loss0.3866453653026838, time taken:541.235s
Epoch:31, loss0.38077057831105776, time taken:540.944s
Epoch:32, loss0.37572325009386986, time taken:540.582s
Epoch:33, loss0.3709150122012943, time taken:540.616s
Epoch:34, loss0.36646912069409154, time taken:540.807s
Epoch:35, loss0.3614582328009419, time taken:541.298s
Epoch:36, loss0.35673171386588365, time taken:537.836s
Epoch:37, loss0.3524343741883058, time taken:538.538s
Epoch:38, loss0.34845523245166987, time taken:539.272s
The text was updated successfully, but these errors were encountered: