-
Notifications
You must be signed in to change notification settings - Fork 4
/
gen_wind_pres.sh
executable file
·559 lines (510 loc) · 18.2 KB
/
gen_wind_pres.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
#!/bin/ksh
#set -x
#-----------------------------------------------------------------------------
#--compute vector wind pattern correlation, bias, mean squared error (MSE),
# variances, MSE by mean difference, MSE by pattern variation,
# and MSE Skill Score (Murphy, MWR 1988). Write out RMSE instead of MSE.
# Author: Fanglin.Yang@noaa.gov, 301-6833722, April 2007
#-----------------------------------------------------------------------------
# VSDB Record of Vector Wind:
# X1=MEAN[uf], X2=MEAN[vf], X3=MEAN[ua], X4=MEAN[va],
# X5=MEAN[uf*ua+vf*va], X6=MEAN[uf*uf+vf*vf], X7=MEAN[ua*ua+va*va]
# where uf and vf are forecast winds, and ua and va are analysis/observed winds,
#
# Pattern correlation: R=( X5 - X1*X3 - X2*X4 ) / sqrt{var(V_f)*var(V_a)}
# where var(V_f)=( X6 - X1*X1 - X2*X2 )
# var(V_a)=( X7 - X3*X3 - X4*X4 )
# V_f and V_a are vector winds, V_f=uf(i)+vf(j), V_a=ua(i)+va(j).
# Mean biases: bias=sqrt[ X6 ] - sqrt[ X7 ]
# MSE: mse=( X6 + X7 - 2*X5 )
# RMSE: rmse=sqrt( X6 + X7 - 2*X5 )
# MSE by mean difference: e_m={ [X1-X3]**2 + [X2-X4]**2 }
# MSE by pattern variation
# e_p={ var(V_f) + var(V_a) - 2*sqrt[var(V_F)*var(V_a)]*R }
# =[ mse - e_m ]
# Murphy's MSE Skill Score:
# msess=1-MSE/var(V_a)
# =2*R*sqrt[var(V_f)/var(V_a)]-[var(V_f)/var(V_a)]-e_m/var(V_a)
#-------------------------------------------------------
export exedir=${exedir:-/stmp/$LOGNAME/vsdb_stats}
if [ ! -s $exedir ]; then mkdir -p $exedir; fi
cd $exedir
export vsdb_data=${vsdb_data:-/climate/save/wx24fy/VRFY/vsdb_data}
export NWPROD=${NWPROD:-/nwprod}
export ndate=${ndate:-$NWPROD/util/exec/ndate}
export FC=${FC:-xlf90}
export FFLAG=${FFLAG:-" "}
## verification type: pres
export vtype=${1:-pres}
## verification variable parameters: e.g. WIND G2/TRO
export vnam=${2:-WIND}
export reg=${3:-G2/TRO}
#export levlist=${4:-"P1000 P925 P850 P700 P500 P400 P300 P250 P200 P150 P100 P50 P20 P10"}
export levlist=${4:-"P1000 P500 P200 P10"}
nlev=`echo $levlist |wc -w`
rm fort.99; echo $levlist | sed "s?P??g" > fort.99
## verification ending date and number of days back
export edate=${5:-20120731}
export ndays=${6:-31}
nhours=`expr $ndays \* 24 - 24`
tmp=`$ndate -$nhours ${edate}00 `
sdate=`echo $tmp | cut -c 1-8`
## forecast cycles to be vefified: 00Z, 06Z, 12Z, 18Z
export cyclist=${7:-"00"}
ncyc=`echo $cyclist | wc -w`
## forecast length in days, excluding 00Z forecasts (gfs default=16, 384 hours)
export fdays=${8:-16}
fdaysp1=`expr $fdays + 1 `
vlength=`expr $fdays \* 24 `
## forecast output frequency requried for verification
export fhout=${9:-6}
nfcst=`expr $vlength \/ $fhout + 1`
## create output name (first remove / from parameter names)
vnam1=`echo $vnam | sed "s?/??g" |sed "s?_WV1?WV?g"`
reg1=`echo $reg | sed "s?/??g"`
outname1=${vnam1}_${reg1}_${sdate}${edate}
outname=${10:-$outname1}
## remove missing data from all models to unify sample size, 0-->NO, 1-->Yes
maskmiss=${maskmiss:-${11:-"1"}}
## model names and number of models
export mdlist=${mdlist:-${12:-"gfs"}}
nmd0=`echo $mdlist | wc -w`
nmdcyc=`expr $nmd0 \* $ncyc `
set -A mdname $mdlist
set -A cycname $cyclist
if [ -s modelname.txt ]; then rm modelname.txt ;fi
>modelname.txt
n=0
while [ $n -lt $nmd0 ]; do
m=0
while [ $m -lt $ncyc ]; do
echo "${mdname[n]}${cycname[m]}" >>modelname.txt
m=`expr $m + 1 `
done
n=`expr $n + 1 `
done
#--------------------------------------------------
# search data
#--------------------------------------------------
if [ -s ${outname}.txt ]; then rm ${outname}.txt ;fi
if [ -s ${outname}.bin ]; then rm ${outname}.bin ;fi
if [ -s ${outname}.ctl ]; then rm ${outname}.ctl ;fi
touch ${outname}.txt
for model in $mdlist; do
mdl=`echo $model |tr "[a-z]" "[A-Z]" `
for cyc in $cyclist; do
cdate=$sdate
while [ $cdate -le $edate ]; do
fhour=00; vhr=$cyc
while [ $fhour -le $vlength ]; do
datadir=${vsdb_data}/${vtype}/${vhr}Z/${model}
vsdbname=${datadir}/${model}_${cdate}.vsdb
for lev1 in $levlist ; do
string=" $mdl $fhour ${cdate}${vhr} $mdl $reg VL1L2 $vnam $lev1 "
mycheck=$( grep "$string" $vsdbname )
if [ $? -ne 0 ]; then
echo "missing" >>$outname.txt
else
grep "$string" $vsdbname |cat >>$outname.txt
fi
done
fhour=` expr $fhour + $fhout `
if [ $fhour -lt 10 ]; then fhour=0$fhour ; fi
vhr=` expr $vhr + $fhout `
if [ $vhr -ge 24 ]; then vhr=`expr $vhr - 24 `; fi
if [ $vhr -lt 10 ]; then vhr=0$vhr ; fi
done
cdate=`$ndate +24 ${cdate}00 | cut -c 1-8 `
done ;#end of cdate
done ;#end of cycle
done ;#end of model
#------------------------------------------------------------
# compute scores and save output in binary format for GrADS
#------------------------------------------------------------
rm convert.f convert.x tmp.txt
yyyymm=`echo $edate | cut -c 1-6`
cat >convert.f <<EOF
!
! read data from vsdb database, compute anomaly correlation, mean-saured-error MSE, bias,
! squared error of mean bias (e_m) and squared error of pattern variation (e_p),
! and variance of forecast (var_f) and variance of analysis (var_a)
! write out in binary format for graphic display
integer, parameter :: nlev=${nlev}
integer, parameter :: nday=${ndays}, fday=${nfcst}, bin=nday
integer, parameter :: nmd=${nmdcyc}, ns=7
integer, parameter :: bin0=20
real*4 :: points(nlev,fday,nday)
real*8 :: vsdb(ns,nlev,fday,nday)
real*4 :: cor(nlev,fday,nday,nmd), rms(nlev,fday,nday,nmd)
real*4 :: mse(nlev,fday,nday,nmd), bias(nlev,fday,nday,nmd)
real*4 :: e_m(nlev,fday,nday,nmd), e_p(nlev,fday,nday,nmd),msess(nlev,fday,nday,nmd)
real*4 :: var_f(nlev,fday,nday,nmd), var_a(nlev,fday,nday,nmd), rvar(nlev,fday,nday,nmd)
real*4 :: num(nlev,fday,nmd), mcor(nlev,fday,nmd)
real*4 :: mrms(nlev,fday,nmd), mmse(nlev,fday,nmd), mbias(nlev,fday,nmd)
real*4 :: me_m(nlev,fday,nmd),me_p(nlev,fday,nmd),mvar_f(nlev,fday,nmd)
real*4 :: mvar_a(nlev,fday,nmd),mrvar(nlev,fday,nmd),mmsess(nlev,fday,nmd)
real*4 :: bincor(nlev,fday,bin,nmd), binbnd(bin+1)
real*4 :: bincor0(nlev,fday,bin0), binbnd0(bin0+1)
real*4 :: fmiss(nlev,fday,nday)
integer :: plev(nlev)
integer :: nchar(nlev,fday,nday,nmd),nhead(nlev,fday,nday,nmd)
character (1000) :: string
character(1) :: substring
character*20 :: mdname(nmd)
data bad/-99.9/,substring/"="/
data maskmiss /${maskmiss}/
open(9,file="modelname.txt",form="formatted",status="old")
open(10,file="${outname}.txt",form="formatted",status="old")
open(11,file="tmp.txt",form="formatted",status="new")
open(20,file="${outname}.bin",form="unformatted",status="new")
do m=1,nmd
read(9,'(a)') mdname(m)
enddo
read(99,*)(plev(n),n=1,nlev)
! create bounds of bins for frequency distribution of anomaly correlations (0,1)
delcor=1.0/bin
do i=1,bin+1
binbnd(i)=(i-1)*delcor
enddo
! for ndays >bin0 cases, use maximum bin0
delcor0=1.0/bin0
do i=1,bin0+1
binbnd0(i)=(i-1)*delcor0
enddo
rewind (10)
! find length of character header
do m=1,nmd
do j=1,nday
do i=1,fday
do n=1,nlev
read(10,'(1A)') string
nchar(n,i,j,m)=len_trim(string)
nhead(n,i,j,m)=index(string,substring) !find character header length before "="
write(11,'(a)') string(nhead(n,i,j,m)+1:nchar(n,i,j,m))
! write(12,'(a)') trim(string), nchar(n,i,j,m), nhead(n,i,j,m)
enddo
enddo
enddo
enddo
! read data
rewind (11)
num=0; mcor=0; mrms=0; mmse=0; mbias=0; fmiss=0.0; bincor=0.0
me_m=0; me_p=0; mvar_f=0; mvar_a=0; mrvar=0; mmsess=0
do 100 m=1,nmd
bincor0=0.0
do j=1,nday
do i=1,fday
do n=1,nlev
if(nhead(n,i,j,m).eq.0) then
read(11,'(1A)') string(1:nchar(n,i,j,m)) !data missing
cor(n,i,j,m)=bad
rms(n,i,j,m)=bad
mse(n,i,j,m)=bad
bias(n,i,j,m)=bad
e_m(n,i,j,m)=bad
e_p(n,i,j,m)=bad
msess(n,i,j,m)=bad
var_f(n,i,j,m)=bad
var_a(n,i,j,m)=bad
rvar(n,i,j,m)=bad
fmiss(n,i,j)=bad
else
read(11,*)points(n,i,j),(vsdb(k,n,i,j),k=1,ns)
if(points(n,i,j).eq.0) then
cor(n,i,j,m)=bad
rms(n,i,j,m)=bad
mse(n,i,j,m)=bad
bias(n,i,j,m)=bad
e_m(n,i,j,m)=bad
e_p(n,i,j,m)=bad
msess(n,i,j,m)=bad
var_f(n,i,j,m)=bad
var_a(n,i,j,m)=bad
rvar(n,i,j,m)=bad
fmiss(n,i,j)=bad
else
var_f(n,i,j,m)=max(0.0d0,vsdb(6,n,i,j)-vsdb(1,n,i,j)**2-vsdb(2,n,i,j)**2)
var_a(n,i,j,m)=max(0.0d0,vsdb(7,n,i,j)-vsdb(3,n,i,j)**2-vsdb(4,n,i,j)**2)
cor(n,i,j,m)=(vsdb(5,n,i,j)-vsdb(1,n,i,j)*vsdb(3,n,i,j)-vsdb(2,n,i,j)*vsdb(4,n,i,j))/ &
sqrt(var_f(n,i,j,m)*var_a(n,i,j,m))
mse(n,i,j,m)=(max(0.0d0,(vsdb(6,n,i,j)+vsdb(7,n,i,j)-2*vsdb(5,n,i,j))))
rms(n,i,j,m)=sqrt(mse(n,i,j,m))
bias(n,i,j,m)=sqrt(vsdb(6,n,i,j))-sqrt(vsdb(7,n,i,j))
e_m(n,i,j,m)=((vsdb(1,n,i,j)-vsdb(3,n,i,j))**2+(vsdb(2,n,i,j)-vsdb(4,n,i,j))**2)
e_p(n,i,j,m)=max(0.0,mse(n,i,j,m)-e_m(n,i,j,m))
if(var_a(n,i,j,m).ne.0) then
rvar(n,i,j,m)=var_f(n,i,j,m)/var_a(n,i,j,m)
msess(n,i,j,m)=1.0-mse(n,i,j,m)/var_a(n,i,j,m)
else
rvar(n,i,j,m)=bad
msess(n,i,j,m)=bad
endif
num(n,i,m)=num(n,i,m)+1
mcor(n,i,m)=mcor(n,i,m)+cor(n,i,j,m)
mrms(n,i,m)=mrms(n,i,m)+rms(n,i,j,m)
mmse(n,i,m)=mmse(n,i,m)+mse(n,i,j,m)
mbias(n,i,m)=mbias(n,i,m)+bias(n,i,j,m)
me_m(n,i,m)=me_m(n,i,m)+e_m(n,i,j,m)
me_p(n,i,m)=me_p(n,i,m)+e_p(n,i,j,m)
mvar_f(n,i,m)=mvar_f(n,i,m)+var_f(n,i,j,m)
mvar_a(n,i,m)=mvar_a(n,i,m)+var_a(n,i,j,m)
do k=1,bin
if(cor(n,i,j,m).gt.binbnd(k).and.cor(n,i,j,m).le.binbnd(k+1)) bincor(n,i,k,m)=bincor(n,i,k,m)+1.0
enddo
do k=1,bin0
if(cor(n,i,j,m).gt.binbnd0(k).and.cor(n,i,j,m).le.binbnd0(k+1)) bincor0(n,i,k)=bincor0(n,i,k)+1.0
enddo
endif
endif
enddo
enddo
enddo
! mean scores in ndays, and normalized bins
!
do i=1,fday
do n=1,nlev
if(num(n,i,m).gt.0) then
mcor(n,i,m)=mcor(n,i,m)/num(n,i,m)
mrms(n,i,m)=mrms(n,i,m)/num(n,i,m)
mmse(n,i,m)=mmse(n,i,m)/num(n,i,m)
mbias(n,i,m)=mbias(n,i,m)/num(n,i,m)
me_m(n,i,m)=me_m(n,i,m)/num(n,i,m)
me_p(n,i,m)=me_p(n,i,m)/num(n,i,m)
mvar_f(n,i,m)=mvar_f(n,i,m)/num(n,i,m)
mvar_a(n,i,m)=mvar_a(n,i,m)/num(n,i,m)
mrvar(n,i,m)=mvar_f(n,i,m)/mvar_a(n,i,m)
mmsess(n,i,m)=1.0-mmse(n,i,m)/mvar_a(n,i,m)
bincor(n,i,:,m)=bincor(n,i,:,m)/num(n,i,m)
bincor0(n,i,:)=bincor0(n,i,:)/num(n,i,m)
else
mcor(n,i,m)=bad
mrms(n,i,m)=bad
mmse(n,i,m)=bad
mbias(n,i,m)=bad
me_m(n,i,m)=bad
me_p(n,i,m)=bad
mvar_f(n,i,m)=bad
mvar_a(n,i,m)=bad
mrvar(n,i,m)=bad
mmsess(n,i,m)=bad
bincor(n,i,:,m)=bad
bincor0(n,i,:)=bad
num(n,i,m)=bad
endif
enddo
enddo
! use maximum 20 bins for frequency
if(nday.gt.bin0) then
do n=1,nlev
do i=1,fday
do j=1,bin0
bincor(n,i,j,m)=bincor0(n,i,j)
enddo
do j=bin0+1,nday
bincor(n,i,j,m)=0
enddo
enddo
enddo
endif
100 continue
!--derive mean scores, mask out missing cases from all models
! to force all models to have the same sample size.
if(maskmiss .gt. 0) then
num=0; mcor=0; mrms=0; mmse=0; mbias=0
me_m=0; me_p=0; mvar_f=0; mvar_a=0; mrvar=0; mmsess=0
do 200 m=1,nmd
do 200 i=1,fday
do 200 n=1,nlev
do j=1,nday
if(fmiss(n,i,j).ne.bad) then
num(n,i,m)=num(n,i,m)+1
mcor(n,i,m)=mcor(n,i,m)+cor(n,i,j,m)
mrms(n,i,m)=mrms(n,i,m)+rms(n,i,j,m)
mmse(n,i,m)=mmse(n,i,m)+mse(n,i,j,m)
mbias(n,i,m)=mbias(n,i,m)+bias(n,i,j,m)
me_m(n,i,m)=me_m(n,i,m)+e_m(n,i,j,m)
me_p(n,i,m)=me_p(n,i,m)+e_p(n,i,j,m)
mvar_f(n,i,m)=mvar_f(n,i,m)+var_f(n,i,j,m)
mvar_a(n,i,m)=mvar_a(n,i,m)+var_a(n,i,j,m)
else
cor(n,i,j,m)=bad
rms(n,i,j,m)=bad
mse(n,i,j,m)=bad
bias(n,i,j,m)=bad
e_m(n,i,j,m)=bad
e_p(n,i,j,m)=bad
msess(n,i,j,m)=bad
var_f(n,i,j,m)=bad
var_a(n,i,j,m)=bad
rvar(n,i,j,m)=bad
endif
enddo
if(num(n,i,m).gt.0) then
mcor(n,i,m)=mcor(n,i,m)/num(n,i,m)
mrms(n,i,m)=mrms(n,i,m)/num(n,i,m)
mmse(n,i,m)=mmse(n,i,m)/num(n,i,m)
mbias(n,i,m)=mbias(n,i,m)/num(n,i,m)
me_m(n,i,m)=me_m(n,i,m)/num(n,i,m)
me_p(n,i,m)=me_p(n,i,m)/num(n,i,m)
mvar_f(n,i,m)=mvar_f(n,i,m)/num(n,i,m)
mvar_a(n,i,m)=mvar_a(n,i,m)/num(n,i,m)
mrvar(n,i,m)=mvar_f(n,i,m)/mvar_a(n,i,m)
mmsess(n,i,m)=1.0-mmse(n,i,m)/mvar_a(n,i,m)
else
mcor(n,i,m)=bad
mrms(n,i,m)=bad
mmse(n,i,m)=bad
mbias(n,i,m)=bad
me_m(n,i,m)=bad
me_p(n,i,m)=bad
mvar_f(n,i,m)=bad
mvar_a(n,i,m)=bad
mrvar(n,i,m)=bad
mmsess(n,i,m)=bad
num(n,i,m)=bad
endif
200 continue
endif
!
!write out correlation, bias, RMSE, ratio of standard deviaiton
!
do j=1,nday
do n=1,nlev
write(20) ((cor(n,i,j,m),m=1,nmd),i=1,fday)
enddo
do n=1,nlev
write(20) ((rms(n,i,j,m),m=1,nmd),i=1,fday)
enddo
do n=1,nlev
write(20) ((bias(n,i,j,m),m=1,nmd),i=1,fday)
enddo
do n=1,nlev
do i=1,fday
do m=1,nmd
if (e_m(n,i,j,m).ne.bad) e_m(n,i,j,m)=sqrt(e_m(n,i,j,m))
enddo
enddo
write(20) ((e_m(n,i,j,m),m=1,nmd),i=1,fday)
enddo
do n=1,nlev
do i=1,fday
do m=1,nmd
if (e_p(n,i,j,m).ne.bad) e_p(n,i,j,m)=sqrt(e_p(n,i,j,m))
enddo
enddo
write(20) ((e_p(n,i,j,m),m=1,nmd),i=1,fday)
enddo
do n=1,nlev
do i=1,fday
do m=1,nmd
if (rvar(n,i,j,m).ne.bad) rvar(n,i,j,m)=sqrt(rvar(n,i,j,m))
enddo
enddo
write(20) ((rvar(n,i,j,m),m=1,nmd),i=1,fday)
enddo
do n=1,nlev
write(20) ((msess(n,i,j,m),m=1,nmd),i=1,fday)
enddo
do n=1,nlev
write(20) ((bincor(n,i,j,m),m=1,nmd),i=1,fday)
enddo
enddo
! save mean scores as the nday+1 record in time
do n=1,nlev
write(20) ((mcor(n,i,m),m=1,nmd),i=1,fday)
enddo
do n=1,nlev
write(20) ((mrms(n,i,m),m=1,nmd),i=1,fday)
enddo
do n=1,nlev
write(20) ((mbias(n,i,m),m=1,nmd),i=1,fday)
enddo
do n=1,nlev
do i=1,fday
do m=1,nmd
if (me_m(n,i,m).ne.bad) me_m(n,i,m)=sqrt(me_m(n,i,m))
enddo
enddo
write(20) ((me_m(n,i,m),m=1,nmd),i=1,fday)
enddo
do n=1,nlev
do i=1,fday
do m=1,nmd
if (me_p(n,i,m).ne.bad) me_p(n,i,m)=sqrt(me_p(n,i,m))
enddo
enddo
write(20) ((me_p(n,i,m),m=1,nmd),i=1,fday)
enddo
do n=1,nlev
do i=1,fday
do m=1,nmd
if (mrvar(n,i,m).ne.bad) mrvar(n,i,m)=sqrt(mrvar(n,i,m))
enddo
enddo
write(20) ((mrvar(n,i,m),m=1,nmd),i=1,fday)
enddo
do n=1,nlev
write(20) ((mmsess(n,i,m),m=1,nmd),i=1,fday)
enddo
do n=1,nlev
write(20) ((num(n,i,m),m=1,nmd),i=1,fday) !note: num of records instead of bincor
enddo
do m=1,nmd
do n=1,nlev
write(13,123) $yyyymm, plev(n), trim(mdname(m)),"_cor", (mcor(n,i,m),i=1,fday)
enddo
do n=1,nlev
write(14,123) $yyyymm, plev(n), trim(mdname(m)),"_rms", (mrms(n,i,m),i=1,fday)
enddo
do n=1,nlev
write(15,123) $yyyymm, plev(n), trim(mdname(m)),"_bia", (mbias(n,i,m),i=1,fday)
enddo
enddo
123 format(i10,i10,"MB ", 2x,A,A, ${nfcst}f10.3)
close (9)
close (10)
close (11)
close (20)
end
EOF
$FC $FFLAG -o convert.x convert.f
./convert.x
if [ $? -ne 0 ]; then
echo "convert.x exec error, exit "
exit 8
fi
meantxt=${vnam1}_${reg1}_${yyyymm}
mv fort.13 meancor_${meantxt}.txt
mv fort.14 meanrms_${meantxt}.txt
mv fort.15 meanbias_${meantxt}.txt
#------------------------------------------------------------
# create GrADS control file
#------------------------------------------------------------
ndaysp1=`expr $ndays + 1 `
YYYY=`echo $sdate | cut -c 1-4`
MM=`echo $sdate | cut -c 5-6`
DD=`echo $sdate | cut -c 7-8`
set -A MONCHAR Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
MMM1=`expr $MM - 1 `
MON=${MONCHAR[$MMM1]}
cat >${outname}.ctl <<EOF1
dset ^${outname}.bin
undef -99.9
options big_endian sequential
title scores
xdef $nmdcyc linear 1 1
ydef $nfcst linear 0 $fhout
zdef $nlev levels `echo $levlist | sed "s?P??g"`
tdef $ndaysp1 Linear $DD$MON$YYYY 1dy
vars 8
pcor $nlev 0 correlation
rms $nlev 0 root-mean squared error (RMSE)
bias $nlev 0 mean bias
emd $nlev 0 RMSE by mean difference
epv $nlev 0 RMSE by pattern variation
rsd $nlev 0 ratio of standard deviation between forecast and analysis
msess $nlev 0 murphy's mean-squared-error skill score
bincor $nlev 0 frequency distribution of AC
endvars
EOF1
exit