forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvideo_input_op.h
1024 lines (931 loc) · 34.2 KB
/
video_input_op.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#ifndef CAFFE2_VIDEO_VIDEO_INPUT_OP_H_
#define CAFFE2_VIDEO_VIDEO_INPUT_OP_H_
#include <exception>
#include <istream>
#include <ostream>
#include <random>
#include <string>
#include <c10/core/thread_pool.h>
#include <c10/util/irange.h>
#include <caffe2/core/db.h>
#include <caffe2/core/logging.h>
#include <caffe2/operators/prefetch_op.h>
#include <caffe2/utils/math.h>
#include <caffe2/video/video_decoder.h>
#include <caffe2/video/video_io.h>
namespace caffe2 {
template <class Context>
class VideoInputOp final : public PrefetchOperator<Context> {
public:
using OperatorBase::OutputSize;
using PrefetchOperator<Context>::context_;
using PrefetchOperator<Context>::prefetch_thread_;
explicit VideoInputOp(const OperatorDef& operator_def, Workspace* ws);
~VideoInputOp() {
PrefetchOperator<Context>::Finalize();
}
// override methods
bool Prefetch() override;
bool CopyPrefetched() override;
private:
void CheckParamsAndPrint();
bool GetClipsAndLabelsFromDBValue(
const std::string& value,
int& height,
int& width,
std::vector<unsigned char*>& buffer_rgb,
int* label_data,
int64_t* video_id_data,
int* start_frame_data,
std::mt19937* randgen);
void DecodeAndTransform(
const std::string& value,
float* clip_rgb_data,
float* clip_of_data,
int* label_data,
int64_t* video_id_data,
int* start_frame_data,
std::mt19937* randgen,
std::bernoulli_distribution* mirror_this_clip);
void GetLabelsFromProto(const TensorProto& label_proto, int* label_data);
bool GetImageAndLabelsFromDBValue(
const std::string& value,
int& height,
int& width,
std::vector<unsigned char*>& buffer_rgb,
int* label_data);
const db::DBReader* reader_;
CPUContext cpu_context_;
Tensor prefetched_clip_rgb_;
Tensor prefetched_clip_of_;
Tensor prefetched_label_;
Tensor prefetched_video_id_;
Tensor prefetched_start_frame_;
Tensor prefetched_clip_rgb_on_device_{Context::GetDeviceType()};
Tensor prefetched_clip_of_on_device_{Context::GetDeviceType()};
Tensor prefetched_label_on_device_{Context::GetDeviceType()};
Tensor prefetched_video_id_on_device_{Context::GetDeviceType()};
Tensor prefetched_start_frame_on_device_{Context::GetDeviceType()};
int batch_size_;
int clip_per_video_;
std::vector<int> clip_start_positions_;
std::vector<float> mean_rgb_;
std::vector<float> inv_std_rgb_;
std::vector<float> mean_of_;
std::vector<float> inv_std_of_;
int channels_rgb_;
int channels_of_;
int crop_size_;
int scale_h_;
int scale_w_;
int short_edge_;
std::vector<int> jitter_scales_;
int length_rgb_;
int sampling_rate_rgb_;
int random_sampling_rate_;
int num_of_required_frame_;
int length_of_;
int sampling_rate_of_;
int frame_gap_of_;
bool random_mirror_;
int num_of_class_;
bool use_local_file_;
bool random_crop_;
int crop_per_clip_;
int flow_data_type_;
int flow_alg_type_;
int decode_type_;
int video_res_type_;
bool do_flow_aggregation_;
bool image_as_input_;
bool get_rgb_;
bool get_optical_flow_;
bool get_video_id_;
bool get_start_frame_;
bool do_multi_label_;
// thread pool for parse + decode
int num_decode_threads_;
std::shared_ptr<TaskThreadPool> thread_pool_;
};
template <class Context>
void VideoInputOp<Context>::CheckParamsAndPrint() {
// check whether the input parameters are valid or not
CAFFE_ENFORCE_GT(batch_size_, 0, "Batch size should be positive.");
CAFFE_ENFORCE_GT(
clip_per_video_, 0, "Number of clips per video should be positive.");
CAFFE_ENFORCE_GT(crop_size_, 0, "Must provide the cropping value.");
if (!image_as_input_) {
CAFFE_ENFORCE_GT(
num_of_required_frame_,
0,
"Required number of frames must be positive.");
}
if (image_as_input_) {
CAFFE_ENFORCE_EQ(
video_res_type_,
VideoResType::USE_WIDTH_HEIGHT,
"Currently only USE_WIDTH_HEIGHT option is supported with images");
}
if (video_res_type_ == VideoResType::USE_SHORT_EDGE) {
CAFFE_ENFORCE_GT(short_edge_, 0, "Must provide the short edge value.");
CAFFE_ENFORCE_GE(
short_edge_,
crop_size_,
"The short edge must be no smaller than the crop value.");
} else if (video_res_type_ == VideoResType::USE_WIDTH_HEIGHT) {
CAFFE_ENFORCE_GT(scale_h_, 0, "Must provide the scale height value.");
CAFFE_ENFORCE_GT(scale_w_, 0, "Must provide the scale width value.");
CAFFE_ENFORCE_GE(
scale_h_,
crop_size_,
"The scaled height must be no smaller than the crop value.");
CAFFE_ENFORCE_GE(
scale_w_,
crop_size_,
"The scaled width must be no smaller than the crop value.");
}
if (jitter_scales_.size() > 0) {
CAFFE_ENFORCE_GE(
video_res_type_,
VideoResType::USE_SHORT_EDGE,
"Scale jittering is used with short_edge scaling only");
}
if (get_rgb_) {
CAFFE_ENFORCE_GT(length_rgb_, 0, "Must provide rgb clip length.");
CAFFE_ENFORCE_GT(
sampling_rate_rgb_, 0, "4 frames for mc2; 2 frames for res3d.");
CAFFE_ENFORCE_EQ(
channels_rgb_, mean_rgb_.size(), "Number rgb channels is wrong!");
CAFFE_ENFORCE_EQ(
channels_rgb_, inv_std_rgb_.size(), "Number rgb channels is wrong!");
}
if (get_optical_flow_) {
CAFFE_ENFORCE_GT(length_of_, 0, "Must provide optical flow clip length.");
CAFFE_ENFORCE_GT(
sampling_rate_of_, 0, "4 frames for mc2; 2 frames for res3d.");
CAFFE_ENFORCE_EQ(
channels_of_,
mean_of_.size(),
"Number of optical flow channels is wrong!");
CAFFE_ENFORCE_EQ(
channels_of_,
inv_std_of_.size(),
"Number of optical flow channels is wrong!");
}
if (clip_per_video_ > 1) {
CAFFE_ENFORCE_EQ(
decode_type_,
DecodeType::DO_UNIFORM_SMP,
"Only uniformly sampling is supported when sampling multiple clips!");
}
if (do_multi_label_) {
CAFFE_ENFORCE_GT(
num_of_class_,
0,
"Number of classes must be set when using multiple labels.");
}
// print out the parameter settings
LOG(INFO) << "Creating a clip input op with the following setting: ";
LOG(INFO) << " Input Type: " << (image_as_input_ ? "Image" : "Video");
LOG(INFO) << " Using " << num_decode_threads_ << " CPU threads;";
LOG(INFO) << " Outputting in batches of " << batch_size_ << " videos;";
LOG(INFO) << " Each video has " << clip_per_video_ << " clips;";
LOG(INFO) << " Scaling image to " << scale_h_ << "x" << scale_w_;
LOG(INFO) << " Cropping video frame to " << crop_size_
<< (random_mirror_ ? " with " : " without ") << "random mirroring;";
LOG(INFO) << " Using " << (random_crop_ ? "random" : "center") << " crop";
LOG(INFO) << " Using " << crop_per_clip_ << " spatial crop(s)";
if (get_rgb_) {
LOG(INFO) << " Using a clip of " << length_rgb_ << " rgb frames "
<< "with " << channels_rgb_ << " channels "
<< "and a sampling rate of 1:" << sampling_rate_rgb_;
if (random_sampling_rate_) {
LOG(INFO) << "random sampling with max:" << random_sampling_rate_;
}
for (const auto i : c10::irange(channels_rgb_)) {
LOG(INFO) << " RGB " << i << "-th channel mean: " << mean_rgb_[i]
<< " std: " << 1.f / inv_std_rgb_[i];
}
}
if (get_optical_flow_) {
LOG(INFO) << " Using a clip of " << length_of_ << " optical flow frames "
<< "with " << channels_of_ << " channels "
<< "and a sampling rate of 1:" << sampling_rate_of_
<< " flow_data_type_: " << flow_data_type_
<< " flow_alg_type_: " << flow_alg_type_;
for (const auto i : c10::irange(channels_of_)) {
LOG(INFO) << " Optical flow" << i
<< "-th channel mean: " << mean_of_[i]
<< " std: " << 1.f / inv_std_of_[i];
}
}
if (video_res_type_ == VideoResType::ORIGINAL_RES) {
LOG(INFO) << " Use original resolution";
} else if (video_res_type_ == VideoResType::USE_SHORT_EDGE) {
LOG(INFO) << " Resize and keep aspect ratio";
} else if (video_res_type_ == VideoResType::USE_WIDTH_HEIGHT) {
LOG(INFO) << " Resize and ignore aspect ratio";
} else {
LOG(ERROR) << " Unknown video resolution type";
}
if (video_res_type_ == VideoResType::USE_SHORT_EDGE) {
if (jitter_scales_.size() > 0) {
LOG(INFO) << "Using scale jittering:";
for (const auto idx : c10::irange(jitter_scales_.size())) {
LOG(INFO) << "scale " << idx << ": " << jitter_scales_[idx];
}
} else {
LOG(INFO) << "No scale jittering is used.";
}
}
if (decode_type_ == DecodeType::DO_TMP_JITTER) {
LOG(INFO) << " Do temporal jittering";
} else if (decode_type_ == DecodeType::USE_START_FRM) {
LOG(INFO) << " Use start_frm for decoding";
} else if (decode_type_ == DecodeType::DO_UNIFORM_SMP) {
LOG(INFO) << " Do uniformly sampling";
} else {
LOG(ERROR) << " Unknown video decoding type";
}
if (get_start_frame_) {
CAFFE_ENFORCE_EQ(
decode_type_,
DecodeType::USE_START_FRM,
"Only decoding with starting frame is supported w/ get start_frame!");
CAFFE_ENFORCE_EQ(
clip_per_video_, 1, "get start frame support only clip per video = 1");
}
}
template <class Context>
VideoInputOp<Context>::VideoInputOp(
const OperatorDef& operator_def,
Workspace* ws)
: PrefetchOperator<Context>(operator_def, ws),
reader_(nullptr),
batch_size_(
OperatorBase::template GetSingleArgument<int>("batch_size", 0)),
clip_per_video_(
OperatorBase::template GetSingleArgument<int>("clip_per_video", 1)),
clip_start_positions_(OperatorBase::template GetRepeatedArgument<int>(
"clip_start_positions",
{})),
channels_rgb_(
OperatorBase::template GetSingleArgument<int>("channels_rgb", 3)),
channels_of_(
OperatorBase::template GetSingleArgument<int>("channels_of", 2)),
crop_size_(OperatorBase::template GetSingleArgument<int>("crop_size", 0)),
scale_h_(OperatorBase::template GetSingleArgument<int>("scale_h", 0)),
scale_w_(OperatorBase::template GetSingleArgument<int>("scale_w", 0)),
short_edge_(
OperatorBase::template GetSingleArgument<int>("short_edge", 0)),
jitter_scales_(
OperatorBase::template GetRepeatedArgument<int>("jitter_scales", {})),
length_rgb_(
OperatorBase::template GetSingleArgument<int>("length_rgb", 0)),
sampling_rate_rgb_(OperatorBase::template GetSingleArgument<int>(
"sampling_rate_rgb",
1)),
random_sampling_rate_(OperatorBase::template GetSingleArgument<int>(
"random_sampling_rate",
0)),
length_of_(OperatorBase::template GetSingleArgument<int>("length_of", 0)),
sampling_rate_of_(
OperatorBase::template GetSingleArgument<int>("sampling_rate_of", 1)),
frame_gap_of_(
OperatorBase::template GetSingleArgument<int>("frame_gap_of", 1)),
random_mirror_(OperatorBase::template GetSingleArgument<bool>(
"random_mirror",
true)),
num_of_class_(
OperatorBase::template GetSingleArgument<int>("num_of_class", 0)),
use_local_file_(OperatorBase::template GetSingleArgument<bool>(
"use_local_file",
false)),
random_crop_(
OperatorBase::template GetSingleArgument<bool>("random_crop", true)),
crop_per_clip_(
OperatorBase::template GetSingleArgument<int>("crop_per_clip", 1)),
flow_data_type_(
OperatorBase::template GetSingleArgument<int>("flow_data_type", 0)),
flow_alg_type_(
OperatorBase::template GetSingleArgument<int>("flow_alg_type", 0)),
decode_type_(
OperatorBase::template GetSingleArgument<int>("decode_type", 0)),
video_res_type_(
OperatorBase::template GetSingleArgument<int>("video_res_type", 0)),
do_flow_aggregation_(OperatorBase::template GetSingleArgument<bool>(
"do_flow_aggregation",
true)),
image_as_input_(OperatorBase::template GetSingleArgument<bool>(
"image_as_input",
false)),
get_rgb_(OperatorBase::template GetSingleArgument<bool>("get_rgb", true)),
get_optical_flow_(OperatorBase::template GetSingleArgument<bool>(
"get_optical_flow",
false)),
get_video_id_(OperatorBase::template GetSingleArgument<bool>(
"get_video_id",
false)),
get_start_frame_(OperatorBase::template GetSingleArgument<bool>(
"get_start_frame",
false)),
do_multi_label_(OperatorBase::template GetSingleArgument<bool>(
"do_multi_label",
false)),
num_decode_threads_(OperatorBase::template GetSingleArgument<int>(
"num_decode_threads",
4)),
thread_pool_(std::make_shared<TaskThreadPool>(num_decode_threads_)) {
try {
num_of_required_frame_ = 0;
// mean and std for normalizing different optical flow data type;
// Example statistics generated from SOA are shown below, and you may
// want to change them if you are running on a different dataset;
// 7 channels: (flow_x, flow_y, flow_magitude, gray, Red, Green, Blue)
const std::vector<float> InputDataMean = {
0.0046635, 0.0046261, 0.963986, 102.976, 110.201, 100.64, 95.9966};
const std::vector<float> InputDataStd = {
0.972347, 0.755146, 1.43588, 55.3691, 58.1489, 56.4701, 55.3324};
// if we need RGB as an input
if (get_rgb_ && !image_as_input_) {
// how many frames we need for RGB
num_of_required_frame_ = std::max(
num_of_required_frame_, (length_rgb_ - 1) * sampling_rate_rgb_ + 1);
if (random_sampling_rate_) {
num_of_required_frame_ = std::max(
num_of_required_frame_,
(length_rgb_ - 1) * random_sampling_rate_ + 1);
}
channels_rgb_ = 3;
for (const auto i : c10::irange(4, 7)) {
mean_rgb_.push_back(InputDataMean[i]);
inv_std_rgb_.push_back(1.f / InputDataStd[i]);
}
}
if (image_as_input_) {
channels_rgb_ = 3;
length_rgb_ = 1;
clip_per_video_ = 1;
get_optical_flow_ = false;
get_rgb_ = true;
sampling_rate_rgb_ = 1;
for (const auto i : c10::irange(4, 7)) {
mean_rgb_.push_back(InputDataMean[i]);
inv_std_rgb_.push_back(1.f / InputDataStd[i]);
}
}
// if we need optical flow as an input
if (get_optical_flow_) {
// how many frames we need for optical flow
num_of_required_frame_ = std::max(
num_of_required_frame_,
(length_of_ - 1) * sampling_rate_of_ + frame_gap_of_ + 1);
// set the parameters for different input data types
switch (flow_data_type_) {
case FlowDataType::Flow2C:
channels_of_ = 2;
for (const auto i : c10::irange(channels_of_)) {
mean_of_.push_back(InputDataMean[i]);
inv_std_of_.push_back(1.f / InputDataStd[i]);
}
break;
case FlowDataType::Flow3C:
channels_of_ = 3;
for (const auto i : c10::irange(channels_of_)) {
mean_of_.push_back(InputDataMean[i]);
inv_std_of_.push_back(1.f / InputDataStd[i]);
}
break;
// early fusion with gray
case FlowDataType::FlowWithGray:
channels_of_ = 3;
for (const auto i : c10::irange(2)) {
mean_of_.push_back(InputDataMean[i]);
inv_std_of_.push_back(1.f / InputDataStd[i]);
}
mean_of_.push_back(InputDataMean[3]);
inv_std_of_.push_back(1.f / InputDataStd[3]);
break;
// early fusion with RGB
case FlowDataType::FlowWithRGB:
channels_of_ = 5;
for (const auto i : c10::irange(2)) {
mean_of_.push_back(InputDataMean[i]);
inv_std_of_.push_back(1.f / InputDataStd[i]);
}
for (const auto i : c10::irange(4, 7)) {
mean_of_.push_back(InputDataMean[i]);
inv_std_of_.push_back(1.f / InputDataStd[i]);
}
break;
default:
LOG(ERROR) << "Unknown optical flow type " << flow_data_type_;
break;
}
}
CheckParamsAndPrint();
// Always need a dbreader, even when using local video files
CAFFE_ENFORCE_GT(
operator_def.input_size(), 0, "Need to have a DBReader blob input");
vector<int64_t> data_shape(5);
vector<int64_t> label_shape(2);
// In case clip_start_positions are given, set the clip_per_video arg
if (clip_start_positions_.size() > 0) {
clip_per_video_ = clip_start_positions_.size();
}
// for RGB data
data_shape[0] = batch_size_ * clip_per_video_ * crop_per_clip_;
data_shape[1] = channels_rgb_;
data_shape[2] = length_rgb_;
data_shape[3] = crop_size_;
data_shape[4] = crop_size_;
ReinitializeTensor(
&prefetched_clip_rgb_, data_shape, at::dtype<float>().device(CPU));
// for optical flow data
data_shape[1] = channels_of_;
data_shape[2] = length_of_;
ReinitializeTensor(
&prefetched_clip_of_, data_shape, at::dtype<float>().device(CPU));
// If do_multi_label is used, output label is a binary vector
// of length num_of_class indicating which labels present
if (do_multi_label_) {
label_shape[0] = batch_size_ * clip_per_video_ * crop_per_clip_;
label_shape[1] = num_of_class_;
ReinitializeTensor(
&prefetched_label_, label_shape, at::dtype<int>().device(CPU));
} else {
ReinitializeTensor(
&prefetched_label_,
vector<int64_t>(1, batch_size_ * clip_per_video_ * crop_per_clip_),
at::dtype<int>().device(CPU));
}
ReinitializeTensor(
&prefetched_video_id_,
vector<int64_t>(1, batch_size_ * clip_per_video_ * crop_per_clip_),
at::dtype<int>().device(CPU));
ReinitializeTensor(
&prefetched_start_frame_,
vector<int64_t>(1, batch_size_ * clip_per_video_ * crop_per_clip_),
at::dtype<int>().device(CPU));
} catch (const std::exception& exc) {
std::cerr << "While calling VideoInputOp initialization\n";
std::cerr << exc.what();
}
}
template <class Context>
void VideoInputOp<Context>::GetLabelsFromProto(
const TensorProto& label_proto,
int* label_data) {
int num_clips = clip_per_video_ * crop_per_clip_;
if (!do_multi_label_) {
for (const auto i : c10::irange(num_clips)) {
label_data[i] = label_proto.int32_data(0);
}
} else {
// For multiple label case, output label is a binary vector
// where presented concepts are marked 1
memset(label_data, 0, sizeof(int) * num_of_class_ * num_clips);
for (const auto i : c10::irange(num_clips)) {
for (const auto j : c10::irange(label_proto.int32_data_size())) {
CAFFE_ENFORCE_LT(
label_proto.int32_data(j),
num_of_class_,
"Label should be less than the number of classes.");
label_data[i * num_of_class_ + label_proto.int32_data(j)] = 1;
}
}
}
}
template <class Context>
bool VideoInputOp<Context>::GetImageAndLabelsFromDBValue(
const std::string& value,
int& height,
int& width,
std::vector<unsigned char*>& buffer_rgb,
int* label_data) {
TensorProtos protos;
CAFFE_ENFORCE(protos.ParseFromString(value));
const TensorProto& image_proto = protos.protos(0);
const TensorProto& label_proto = protos.protos(1);
GetLabelsFromProto(label_proto, label_data);
cv::Mat src;
if (image_proto.data_type() == TensorProto::STRING) {
// encoded image string.
DCHECK_EQ(image_proto.string_data_size(), 1);
const string& encoded_image_str = image_proto.string_data(0);
int encoded_size = encoded_image_str.size();
// We use a cv::Mat to wrap the encoded str so we do not need a copy.
src = cv::imdecode(
cv::Mat(
1,
&encoded_size,
CV_8UC1,
const_cast<char*>(encoded_image_str.data())),
cv::IMREAD_COLOR);
if (src.rows == 0 || src.cols == 0) {
throw std::runtime_error("Both rows and cols are 0 for image");
}
} else if (image_proto.data_type() == TensorProto::BYTE) {
// raw image content.
int src_c = (image_proto.dims_size() == 3) ? image_proto.dims(2) : 1;
CAFFE_ENFORCE(src_c == 3 || src_c == 1);
src.create(
image_proto.dims(0),
image_proto.dims(1),
(src_c == 3) ? CV_8UC3 : CV_8UC1);
memcpy(
src.ptr<uchar>(0),
image_proto.byte_data().data(),
image_proto.byte_data().size());
} else {
throw std::runtime_error(
"Unknown image data type: " +
caffe2::to_string(image_proto.data_type()));
}
CAFFE_ENFORCE(src.isContinuous());
cv::Mat scaled_img;
cv::resize(
src, scaled_img, cv::Size(scale_w_, scale_h_), 0, 0, cv::INTER_AREA);
cv::Mat img;
if (channels_rgb_ == src.channels()) {
img = scaled_img;
} else {
cv::cvtColor(
scaled_img,
img,
(channels_rgb_ == 1) ? cv::COLOR_BGR2GRAY : cv::COLOR_GRAY2BGR);
}
cv::Mat rgb_img;
if (channels_rgb_ == 1) {
cv::cvtColor(img, rgb_img, cv::COLOR_BGR2RGB);
} else {
rgb_img = img;
}
CAFFE_ENFORCE(rgb_img.isContinuous());
unsigned char* data = new unsigned char[scale_h_ * scale_w_ * channels_rgb_];
memcpy(
data,
rgb_img.data,
scale_h_ * scale_w_ * channels_rgb_ * sizeof(unsigned char));
buffer_rgb.push_back(data);
width = scale_w_;
height = scale_h_;
return true;
}
template <class Context>
bool VideoInputOp<Context>::GetClipsAndLabelsFromDBValue(
const std::string& value,
int& height,
int& width,
std::vector<unsigned char*>& buffer_rgb,
int* label_data,
int64_t* video_id_data,
int* start_frame_data,
std::mt19937* randgen) {
TensorProtos protos;
int curr_proto_idx = 0;
CAFFE_ENFORCE(protos.ParseFromString(value));
const TensorProto& video_proto = protos.protos(curr_proto_idx++);
const TensorProto& label_proto = protos.protos(curr_proto_idx++);
int start_frm = 0;
int num_clips = clip_per_video_ * crop_per_clip_;
// start_frm is only valid when sampling 1 clip per video without
// temporal jitterring
if (decode_type_ == DecodeType::USE_START_FRM) {
CAFFE_ENFORCE_GE(
protos.protos_size(),
curr_proto_idx + 1,
"Start frm proto not provided");
const TensorProto& start_frm_proto = protos.protos(curr_proto_idx++);
start_frm = start_frm_proto.int32_data(0);
if (get_start_frame_) {
for (const auto i : c10::irange(num_clips)) {
start_frame_data[i] = start_frm;
}
}
}
if (get_video_id_) {
CAFFE_ENFORCE_GE(
protos.protos_size(), curr_proto_idx + 1, "Video Id not provided");
const TensorProto& video_id_proto = protos.protos(curr_proto_idx);
for (const auto i : c10::irange(num_clips)) {
video_id_data[i] = video_id_proto.int64_data(0);
}
}
// assign labels
GetLabelsFromProto(label_proto, label_data);
if (use_local_file_) {
CAFFE_ENFORCE_EQ(
video_proto.data_type(),
TensorProto::STRING,
"Database with a file_list is expected to be string data");
}
// initializing the decoding params
Params params;
params.maximumOutputFrames_ = MAX_DECODING_FRAMES;
params.video_res_type_ = video_res_type_;
params.crop_size_ = crop_size_;
params.short_edge_ = short_edge_;
params.outputWidth_ = scale_w_;
params.outputHeight_ = scale_h_;
params.decode_type_ = decode_type_;
params.num_of_required_frame_ = num_of_required_frame_;
if (jitter_scales_.size() > 0) {
int select_idx =
std::uniform_int_distribution<>(0, jitter_scales_.size() - 1)(*randgen);
params.short_edge_ = jitter_scales_[select_idx];
}
char* video_buffer = nullptr; // for decoding from buffer
std::string video_filename; // for decoding from file
int encoded_size = 0;
if (video_proto.data_type() == TensorProto::STRING) {
const string& encoded_video_str = video_proto.string_data(0);
if (!use_local_file_) {
encoded_size = encoded_video_str.size();
video_buffer = const_cast<char*>(encoded_video_str.data());
} else {
video_filename = encoded_video_str;
}
} else if (video_proto.data_type() == TensorProto::BYTE) {
if (!use_local_file_) {
encoded_size = video_proto.byte_data().size();
video_buffer = const_cast<char*>(video_proto.byte_data().data());
} else {
// TODO: does this works?
video_filename = video_proto.string_data(0);
}
} else {
CAFFE_ENFORCE(false, "Unknown video data type.");
}
DecodeMultipleClipsFromVideo(
video_buffer,
video_filename,
encoded_size,
params,
start_frm,
clip_per_video_,
clip_start_positions_,
use_local_file_,
height,
width,
buffer_rgb);
return true;
}
template <class Context>
void VideoInputOp<Context>::DecodeAndTransform(
const std::string& value,
float* clip_rgb_data,
float* clip_of_data,
int* label_data,
int64_t* video_id_data,
int* start_frame_data,
std::mt19937* randgen,
std::bernoulli_distribution* mirror_this_clip) {
try {
std::vector<unsigned char*> buffer_rgb;
// get the video resolution after decoding
int height = 0;
int width = 0;
if (image_as_input_) {
CHECK(GetImageAndLabelsFromDBValue(
value, height, width, buffer_rgb, label_data));
} else {
// Decode the video from memory or read from a local file
CHECK(GetClipsAndLabelsFromDBValue(
value,
height,
width,
buffer_rgb,
label_data,
video_id_data,
start_frame_data,
randgen));
}
int clip_offset_rgb = channels_rgb_ * length_rgb_ * crop_size_ * crop_size_;
int clip_offset_of = channels_of_ * length_of_ * crop_size_ * crop_size_;
for (int i = 0; i < std::min(clip_per_video_, int(buffer_rgb.size()));
i++) {
for (const auto j : c10::irange(crop_per_clip_)) {
// get the rectangle for cropping
int h_off = 0;
int w_off = 0;
if (crop_per_clip_ > 1) {
CAFFE_ENFORCE(
random_crop_ == false,
"Only using multiple crops w/o random cropping");
}
if (random_crop_) {
// using random crop for training
h_off =
std::uniform_int_distribution<>(0, height - crop_size_)(*randgen);
w_off =
std::uniform_int_distribution<>(0, width - crop_size_)(*randgen);
} else {
// using multiple spatial crops
if (crop_per_clip_ > 1) { // normally 3 crops
if (height < width) {
h_off = (height - crop_size_) / 2;
w_off = j * (width - crop_size_) / (crop_per_clip_ - 1);
} else {
h_off = j * (height - crop_size_) / (crop_per_clip_ - 1);
w_off = (width - crop_size_) / 2;
}
// LOG(INFO) << "crop " << j << "-th " << h_off << " & " << w_off;
} else { // using center crop for testing
h_off = (height - crop_size_) / 2;
w_off = (width - crop_size_) / 2;
}
}
cv::Rect rect(w_off, h_off, crop_size_, crop_size_);
int this_clip_sampling_rate;
if (random_sampling_rate_) {
this_clip_sampling_rate = std::uniform_int_distribution<>(
1, random_sampling_rate_)(*randgen);
}
// randomly mirror the image or not
bool mirror_me = random_mirror_ && (*mirror_this_clip)(*randgen);
if (get_rgb_ && clip_rgb_data) {
ClipTransformRGB(
buffer_rgb[i],
crop_size_,
length_rgb_,
channels_rgb_,
(random_sampling_rate_ == 0 ? sampling_rate_rgb_
: this_clip_sampling_rate),
height,
width,
h_off,
w_off,
mirror_me,
mean_rgb_,
inv_std_rgb_,
clip_rgb_data + ((i * crop_per_clip_ + j) * clip_offset_rgb));
}
if (get_optical_flow_ && clip_of_data) {
ClipTransformOpticalFlow(
buffer_rgb[i],
crop_size_,
length_of_,
channels_of_,
sampling_rate_of_,
height,
width,
rect,
channels_rgb_,
mirror_me,
flow_alg_type_,
flow_data_type_,
frame_gap_of_,
do_flow_aggregation_,
mean_of_,
inv_std_of_,
clip_of_data + ((i * crop_per_clip_ + j) * clip_offset_of));
}
}
}
if (buffer_rgb.size() > 0) {
for (const auto i : c10::irange(buffer_rgb.size())) {
unsigned char* buff = buffer_rgb[i];
delete[] buff;
}
}
buffer_rgb.clear();
} catch (const std::exception& exc) {
std::cerr << "While calling DecodeAndTransform()\n";
std::cerr << exc.what();
}
}
template <class Context>
bool VideoInputOp<Context>::Prefetch() {
try {
// We will get the reader pointer from input.
// If we use local clips, db will store the list
reader_ = &OperatorBase::Input<db::DBReader>(0);
// Call mutable_data() once to allocate the underlying memory.
prefetched_clip_rgb_.mutable_data<float>();
prefetched_clip_of_.mutable_data<float>();
prefetched_label_.mutable_data<int>();
prefetched_video_id_.mutable_data<int64_t>();
prefetched_start_frame_.mutable_data<int>();
// Prefetching handled with a thread pool of "decode_threads" threads.
std::mt19937 meta_randgen(time(nullptr));
std::vector<std::mt19937> randgen_per_thread;
for (const auto i : c10::irange(num_decode_threads_)) {
randgen_per_thread.emplace_back(meta_randgen());
}
std::bernoulli_distribution mirror_this_clip(0.5);
for (const auto item_id : c10::irange(batch_size_)) {
std::mt19937* randgen =
&randgen_per_thread[item_id % num_decode_threads_];
int frame_size = crop_size_ * crop_size_;
// get the clip data pointer for the item_id -th example
float* clip_rgb_data = prefetched_clip_rgb_.mutable_data<float>() +
frame_size * length_rgb_ * channels_rgb_ * item_id * clip_per_video_ *
crop_per_clip_;
// get the optical flow data for the current clip
float* clip_of_data = prefetched_clip_of_.mutable_data<float>() +
frame_size * length_of_ * channels_of_ * item_id * clip_per_video_ *
crop_per_clip_;
// get the label data pointer for the item_id -th example
int* label_data = prefetched_label_.mutable_data<int>() +
(do_multi_label_ ? num_of_class_ : 1) * item_id * clip_per_video_ *
crop_per_clip_;
// get the video id data pointer for the item_id -th example
int64_t* video_id_data = prefetched_video_id_.mutable_data<int64_t>() +
item_id * clip_per_video_ * crop_per_clip_;
int* start_frame_data = prefetched_start_frame_.mutable_data<int>() +
item_id * clip_per_video_ * crop_per_clip_;
std::string key, value;
// read data
reader_->Read(&key, &value);
thread_pool_->run(std::bind(
&VideoInputOp<Context>::DecodeAndTransform,
this,
std::string(value),
clip_rgb_data,
clip_of_data,
label_data,
video_id_data,
start_frame_data,
randgen,
&mirror_this_clip));
} // for over the batch
thread_pool_->waitWorkComplete();
// If the context is not CPUContext, we will need to do a copy in the
// prefetch function as well.
if (!std::is_same<Context, CPUContext>::value) {
if (get_rgb_) {
prefetched_clip_rgb_on_device_.CopyFrom(
prefetched_clip_rgb_, &context_);
}
if (get_optical_flow_) {
prefetched_clip_of_on_device_.CopyFrom(prefetched_clip_of_, &context_);
}
prefetched_label_on_device_.CopyFrom(prefetched_label_, &context_);
if (get_video_id_) {
prefetched_video_id_on_device_.CopyFrom(
prefetched_video_id_, &context_);
}
if (get_start_frame_) {
prefetched_start_frame_on_device_.CopyFrom(
prefetched_start_frame_, &context_);
}
}
} catch (const std::exception& exc) {
std::cerr << "While calling Prefetch()\n";
std::cerr << exc.what();
}
return true;
}
template <class Context>
bool VideoInputOp<Context>::CopyPrefetched() {
try {
int index = 0;
auto type = Context::GetDeviceType();
if (get_rgb_) {
auto* clip_rgb_output = OperatorBase::Output<Tensor>(index++, type);
if (std::is_same<Context, CPUContext>::value) {
clip_rgb_output->CopyFrom(prefetched_clip_rgb_, &context_);
} else {
clip_rgb_output->CopyFrom(prefetched_clip_rgb_on_device_, &context_);
}
}
if (get_optical_flow_) {
auto* clip_of_output = OperatorBase::Output<Tensor>(index++, type);
if (std::is_same<Context, CPUContext>::value) {
clip_of_output->CopyFrom(prefetched_clip_of_, &context_);
} else {
clip_of_output->CopyFrom(prefetched_clip_of_on_device_, &context_);
}
}
auto* label_output = OperatorBase::Output<Tensor>(index++, type);
if (std::is_same<Context, CPUContext>::value) {
label_output->CopyFrom(prefetched_label_, &context_);
} else {
label_output->CopyFrom(prefetched_label_on_device_, &context_);
}
if (get_video_id_) {
auto* video_id_output = OperatorBase::Output<Tensor>(index++, type);
if (std::is_same<Context, CPUContext>::value) {
video_id_output->CopyFrom(prefetched_video_id_, &context_);