forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_c10d_spawn_gloo.py
360 lines (309 loc) · 13.7 KB
/
test_c10d_spawn_gloo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import copy
import os
import sys
import tempfile
import unittest
import test_c10d_spawn
import torch
import torch.distributed as c10d
import torch.nn as nn
from test_c10d_spawn import _torch_dist_nn_available
from torch.testing._internal.common_cuda import TEST_CUDA, TEST_MULTIGPU
from torch.testing._internal.common_distributed import requires_gloo, \
create_device, MultiProcessTestCase, skip_if_lt_x_gpu
from torch.testing._internal.common_utils import TEST_WITH_TSAN
from torch.testing._internal.common_utils import TestCase, run_tests
@unittest.skipIf(sys.version_info >= (3, 9), "Fails on Python-3.9, see https://github.com/pytorch/pytorch/issues/51619")
class ProcessGroupShareTensorTest(test_c10d_spawn.AbstractProcessGroupShareTensorTest, TestCase):
@classmethod
def opts(cls, threads=2):
opts = c10d.ProcessGroupGloo._Options()
opts._timeout = 5.0
opts._devices = [create_device(interface='lo')]
opts._threads = threads
return opts
@classmethod
def _init_pg_gloo(cls, rank, filename, world_size):
store = c10d.FileStore(filename, world_size)
return c10d.ProcessGroupGloo(
store, rank, world_size, ProcessGroupShareTensorTest.opts())
@unittest.skipIf(not TEST_MULTIGPU, "At least 2 CUDA GPUS needed")
def test_shared_broadcast_gloo(self):
self._test_multiprocess(
ProcessGroupShareTensorTest._test_broadcast_process,
[torch.ones(2, 2).to(i) * i for i in range(self.world_size)],
ProcessGroupShareTensorTest._init_pg_gloo,
1)
@unittest.skipIf(not TEST_MULTIGPU, "At least 2 CUDA GPUS needed")
def test_shared_allreduce_gloo(self):
self._test_multiprocess(
ProcessGroupShareTensorTest._test_allreduce_process,
[torch.ones(2, 2).to(i) for i in range(self.world_size)],
ProcessGroupShareTensorTest._init_pg_gloo,
1)
@unittest.skipIf(not TEST_MULTIGPU, "At least 2 CUDA GPUS needed")
def test_shared_allgather_gloo(self):
self._test_multiprocess(
ProcessGroupShareTensorTest._test_allgather_process,
[torch.ones(2, 2).to(i) * i for i in range(self.world_size)],
ProcessGroupShareTensorTest._init_pg_gloo,
self.world_size)
@classmethod
def _test_allgather_chunk_process(
cls, rank, filename, shared_tensor, world_size, init_pg, c2p, p2c):
pg = init_pg(rank, filename, world_size)
chunks = torch.chunk(shared_tensor, world_size, dim=0)
x = chunks[rank]
ys = [torch.zeros_like(x) for _ in range(world_size)]
pg.allgather(ys, x).wait()
c2p.put((rank, chunks[0].to("cpu"), ys[0].to("cpu")))
c2p.put((rank, chunks[1].to("cpu"), ys[1].to("cpu")))
p2c.get()
@unittest.skipIf(not TEST_MULTIGPU, "At least 2 CUDA GPUS needed")
def test_shared_allgather_chunk_gloo(self):
self._test_multiprocess(
ProcessGroupShareTensorTest._test_allgather_chunk_process,
torch.tensor(range(4)).reshape(2, 2),
ProcessGroupShareTensorTest._init_pg_gloo,
self.world_size)
@unittest.skipIf(TEST_WITH_TSAN, "TSAN is not fork-safe since we're forking in a multi-threaded environment")
class DistributedDataParallelSingleProcessTest(TestCase):
def setUp(self):
self.rank = 0
self.world_size = 1
self.file = tempfile.NamedTemporaryFile(delete=False) # noqa: P201
def tearDown(self):
try:
os.remove(self.file.name)
except OSError:
pass
def _test_base(self, net, inp, check_allclose=True):
store = c10d.FileStore(self.file.name, self.world_size)
process_group = c10d.ProcessGroupGloo(store, self.rank, self.world_size)
if inp[0].is_cuda:
device_ids = [torch.cuda.current_device()]
else:
device_ids = None
ddp = nn.parallel.DistributedDataParallel(
copy.deepcopy(net),
device_ids=device_ids,
process_group=process_group
)
net_opt = torch.optim.Adam(net.parameters(), lr=0.001)
ddp_opt = torch.optim.Adam(ddp.parameters(), lr=0.001)
for i, j in zip(ddp.parameters(), net.parameters()):
self.assertTrue(i.allclose(j))
for _ in range(10):
net_out = net(*inp)
ddp_out = ddp(*inp)
net_out.sum().backward()
ddp_out.sum().backward()
net_opt.step()
ddp_opt.step()
if check_allclose:
for i, j in zip(ddp.parameters(), net.parameters()):
self.assertTrue(i.allclose(j))
@requires_gloo()
def test_cpu(self):
self._test_base(nn.Linear(2, 2), [torch.randn(30, 2)])
@requires_gloo()
@unittest.skipIf(not TEST_CUDA, "At least 1 CUDA GPUS needed")
def test_cuda(self):
self._test_base(nn.Linear(2, 2).to(0), [torch.randn(30, 2).to(0)])
@requires_gloo()
@unittest.skipIf(not TEST_CUDA, "At least 1 CUDA GPUS needed")
def test_rnn(self):
# This test is inspired by the bug reported in
# https://github.com/pytorch/pytorch/issues/36268
BATCH_SIZE = 12 # Divisible by 2, 3, 4
INPUT_DIM = 256
OUTPUT_DIM = 256
HIDDEN_DIM = 256
N_LAYERS = 3
SEQ_LEN = 100
class Net(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim, hidden_layers):
super(Net, self).__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.hidden_layers = hidden_layers
self.lstm = nn.LSTM(input_dim, hidden_dim, hidden_layers, batch_first=True)
self.h2o = nn.Linear(hidden_dim, output_dim)
def forward(self, x, y):
self.lstm.flatten_parameters()
h_t, _ = self.lstm(x)
output = self.h2o(h_t)
loss = nn.functional.mse_loss(output, y)
return loss
net = Net(INPUT_DIM, HIDDEN_DIM, OUTPUT_DIM, N_LAYERS).to(0)
inp = [
torch.randn((BATCH_SIZE, SEQ_LEN, INPUT_DIM)).to(0),
torch.rand((BATCH_SIZE, SEQ_LEN, OUTPUT_DIM)).to(0)
]
# Not checking result allclose as the parameter inconsistency exist
# prior to this change. See #37079
self._test_base(net, inp, check_allclose=False)
class TestDistributedNNFunctions(MultiProcessTestCase):
def setUp(self):
if not _torch_dist_nn_available:
raise unittest.SkipTest("torch.distributed.nn is not available")
super(TestDistributedNNFunctions, self).setUp()
self._spawn_processes()
def tearDown(self):
super(TestDistributedNNFunctions, self).tearDown()
try:
os.remove(self.file_name)
except OSError:
pass
@property
def op_timeout_sec(self):
return 1
@property
def world_size(self):
return 2
@requires_gloo()
@skip_if_lt_x_gpu(2)
def test_broadcast(self):
store = c10d.FileStore(self.file_name, self.world_size)
# This is required because these functions calls directly to the .dist and needs
# the world to be initialized
c10d.init_process_group(store=store, rank=self.rank, world_size=self.world_size, backend='gloo')
device = torch.device(f"cuda:{self.rank}")
x = torch.ones(5, 5, device=device) + self.rank
x.requires_grad = True
y = torch.distributed.nn.broadcast(x, 1)
self.assertEqual(y, 1 + torch.ones(5, 5))
z = y.sin().sum()
z.backward()
# We can't check the gradient of communications numerically so we have to do some calculations
if self.rank == 1:
self.assertEqual(x.grad, 2 * torch.cos(x))
elif self.rank == 0:
self.assertEqual(x.grad, torch.zeros(5, 5, device=device))
@requires_gloo()
@skip_if_lt_x_gpu(2)
def test_gather(self):
store = c10d.FileStore(self.file_name, self.world_size)
# This is required because these functions calls directly to the .dist and needs
# the world to be initialized
c10d.init_process_group(store=store, rank=self.rank, world_size=self.world_size, backend='gloo')
device = torch.device(f"cuda:{self.rank}")
x = torch.ones(5, 5, device=device) + self.rank
x.requires_grad = True
tensors = torch.distributed.nn.gather(x, 1)
if self.rank == 1:
for i, t in enumerate(tensors):
self.assertEqual(t, torch.ones(5, 5, device=device) + i)
elif self.rank == 0:
for i, t in enumerate(tensors):
zeros = torch.zeros(5, 5, device=device)
self.assertEqual(t, zeros)
y = torch.sum(torch.stack(tensors), axis=0)
z = y.sin().sum()
z.backward()
# Test gradient
x_s = 3 * torch.ones(5, 5, device=device)
self.assertEqual(x.grad, x_s.cos())
@requires_gloo()
@skip_if_lt_x_gpu(2)
def test_scatter(self):
store = c10d.FileStore(self.file_name, self.world_size)
# This is required because these functions calls directly to the .dist and needs
# the world to be initialized
c10d.init_process_group(store=store, rank=self.rank, world_size=self.world_size, backend='gloo')
device = torch.device(f"cuda:{self.rank}")
x0 = torch.ones(5, 5, device=device)
x1 = torch.ones(5, 5, device=device) + 1
x0.requires_grad = True
x1.requires_grad = True
y = torch.distributed.nn.scatter([x0, x1], 1)
if self.rank == 1:
self.assertEqual(y, 1 + torch.ones(5, 5, device=device))
elif self.rank == 0:
self.assertEqual(y, torch.ones(5, 5, device=device))
z = y.sin().sum()
z.backward()
# Test gradient
if self.rank == 1:
x0_s = torch.ones(5, 5, device=device).cos()
x1_s = (2 * torch.ones(5, 5, device=device)).cos()
self.assertEqual(x0.grad, x0_s)
self.assertEqual(x1.grad, x1_s)
if self.rank == 0:
self.assertEqual(x0.grad, torch.zeros(5, 5, device=device))
@requires_gloo()
@skip_if_lt_x_gpu(2)
def test_reduce(self):
store = c10d.FileStore(self.file_name, self.world_size)
# This is required because these functions calls directly to the .dist and needs
# the world to be initialized
c10d.init_process_group(store=store, rank=self.rank, world_size=self.world_size, backend='gloo')
device = torch.device(f"cuda:{self.rank}")
x = torch.ones(5, 5, device=device) + self.rank
x.requires_grad = True
y = torch.distributed.nn.reduce(x, 1, op=c10d.ReduceOp.SUM)
if self.rank == 1:
self.assertEqual(y, 3 * torch.ones(5, 5, device=device))
z = y.sin().sum()
z.backward()
# Gradients are broadcasted to both ranks
x_g = (3 * torch.ones(5, 5, device=device)).cos()
self.assertEqual(x.grad, x_g)
@requires_gloo()
@skip_if_lt_x_gpu(2)
def test_allreduce(self):
store = c10d.FileStore(self.file_name, self.world_size)
# This is required because these functions calls directly to the .dist and needs
# the world to be initialized
c10d.init_process_group(store=store, rank=self.rank, world_size=self.world_size, backend='gloo')
device = torch.device(f"cuda:{self.rank}")
x = torch.ones(5, 5, device=device) + self.rank
x.requires_grad = True
y = torch.distributed.nn.all_reduce(x, op=c10d.ReduceOp.SUM)
self.assertEqual(y, 3 * torch.ones(5, 5, device=device))
z = y.sin().sum()
z.backward()
x_g = 2 * (3 * torch.ones(5, 5, device=device)).cos()
self.assertEqual(x.grad, x_g)
@requires_gloo()
@skip_if_lt_x_gpu(2)
def test_all_gather(self):
store = c10d.FileStore(self.file_name, self.world_size)
# This is required because these functions calls directly to the .dist and needs
# the world to be initialized
c10d.init_process_group(store=store, rank=self.rank, world_size=self.world_size, backend='gloo')
device = torch.device(f"cuda:{self.rank}")
x = torch.ones(5, 5, device=device) + self.rank
x.requires_grad = True
tensors = torch.distributed.nn.all_gather(x)
for i, t in enumerate(tensors):
self.assertEqual(t, torch.ones(5, 5, device=device) + i)
y = torch.sum(torch.stack(tensors), axis=0)
z = y.sin().sum()
z.backward()
x_s = 2 * (3 * torch.ones(5, 5, device=device)).cos()
self.assertEqual(x.grad, x_s)
@requires_gloo()
@skip_if_lt_x_gpu(2)
def test_all_to_all(self):
store = c10d.FileStore(self.file_name, self.world_size)
# This is required because these functions calls directly to the .dist and needs
# the world to be initialized
c10d.init_process_group(store=store, rank=self.rank, world_size=self.world_size, backend='gloo')
device = torch.device(f"cuda:{self.rank}")
x0 = torch.ones(5, 5, device=device) + 2 * self.rank
x1 = torch.ones(5, 5, device=device) + 2 * self.rank
x0.requires_grad = True
x1.requires_grad = True
tensors = torch.distributed.nn.all_to_all([x0, x1])
for i, t in enumerate(tensors):
self.assertEqual(t, torch.ones(5, 5, device=device) + 2 * i)
y = torch.sum(torch.stack(tensors), axis=0)
z = y.sin().sum()
z.backward()
x_s = (4 * torch.ones(5, 5, device=device)).cos()
self.assertEqual(x0.grad, x_s)
self.assertEqual(x1.grad, x_s)
if __name__ == '__main__':
run_tests()