forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathUpSampleNearest3d.cpp
203 lines (174 loc) · 6.98 KB
/
UpSampleNearest3d.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
#include <ATen/ATen.h>
#include <ATen/NativeFunctions.h>
#include <ATen/native/UpSample.h>
#include <c10/util/irange.h>
namespace at {
namespace meta {
TORCH_META_FUNC(upsample_nearest3d) (
const Tensor& input,
IntArrayRef output_size,
c10::optional<double> scales_d,
c10::optional<double> scales_h,
c10::optional<double> scales_w
) {
auto full_output_size = native::upsample_3d_common_check(input.sizes(), output_size);
// Allow for empty batch size but not other dimensions
TORCH_CHECK(
input.numel() != 0 || c10::multiply_integers(input.sizes().begin() + 1, input.sizes().end()),
"Non-empty 5D data tensor expected but got a tensor with sizes ",
input.sizes());
set_output(full_output_size, input.options().memory_format(input.suggest_memory_format()));
}
TORCH_META_FUNC(_upsample_nearest_exact3d) (
const Tensor& input,
IntArrayRef output_size,
c10::optional<double> scales_d,
c10::optional<double> scales_h,
c10::optional<double> scales_w
) {
auto full_output_size = native::upsample_3d_common_check(input.sizes(), output_size);
// Allow for empty batch size but not other dimensions
TORCH_CHECK(
input.numel() != 0 || c10::multiply_integers(input.sizes().begin() + 1, input.sizes().end()),
"Non-empty 5D data tensor expected but got a tensor with sizes ",
input.sizes());
set_output(full_output_size, input.options().memory_format(input.suggest_memory_format()));
}
TORCH_META_FUNC(upsample_nearest3d_backward) (
const Tensor& grad_output,
IntArrayRef output_size,
IntArrayRef input_size,
c10::optional<double> scales_d,
c10::optional<double> scales_h,
c10::optional<double> scales_w
) {
auto full_output_size = native::upsample_3d_common_check(input_size, output_size);
TORCH_CHECK(
grad_output.dim() == 5,
"Expected grad_output to be a tensor of dimension 5 but got: dimension ", grad_output.dim());
for (const auto i : c10::irange(5)) {
TORCH_CHECK(
grad_output.size(i) == full_output_size[i],
"Expected grad_output to have the same shape as output;",
" output.size(", i, ") = ", full_output_size[i],
" but got grad_output.size(", i, ") = ", grad_output.size(i));
}
set_output(input_size, grad_output.options());
}
TORCH_META_FUNC(_upsample_nearest_exact3d_backward) (
const Tensor& grad_output,
IntArrayRef output_size,
IntArrayRef input_size,
c10::optional<double> scales_d,
c10::optional<double> scales_h,
c10::optional<double> scales_w
) {
auto full_output_size = native::upsample_3d_common_check(input_size, output_size);
TORCH_CHECK(
grad_output.dim() == 5,
"Expected grad_output to be a tensor of dimension 5 but got: dimension ", grad_output.dim());
for (const auto i : c10::irange(5)) {
TORCH_CHECK(
grad_output.size(i) == full_output_size[i],
"Expected grad_output to have the same shape as output;",
" output.size(", i, ") = ", full_output_size[i],
" but got grad_output.size(", i, ") = ", grad_output.size(i));
}
set_output(input_size, grad_output.options());
}
} // namespace meta
namespace native {
TORCH_IMPL_FUNC(upsample_nearest3d_out_cpu) (
const Tensor& input,
IntArrayRef output_size,
c10::optional<double> scales_d,
c10::optional<double> scales_h,
c10::optional<double> scales_w,
const Tensor& output
) {
upsample_nearest3d_kernel(kCPU, output, input, scales_d, scales_h, scales_w);
}
TORCH_IMPL_FUNC(_upsample_nearest_exact3d_out_cpu) (
const Tensor& input,
IntArrayRef output_size,
c10::optional<double> scales_d,
c10::optional<double> scales_h,
c10::optional<double> scales_w,
const Tensor& output
) {
_upsample_nearest_exact3d_kernel(kCPU, output, input, scales_d, scales_h, scales_w);
}
TORCH_IMPL_FUNC(upsample_nearest3d_backward_out_cpu) (
const Tensor& grad_output,
IntArrayRef output_size,
IntArrayRef input_size,
c10::optional<double> scales_d,
c10::optional<double> scales_h,
c10::optional<double> scales_w,
const Tensor& grad_input) {
grad_input.zero_();
upsample_nearest3d_backward_kernel(kCPU, grad_input, grad_output, scales_d, scales_h, scales_w);
}
TORCH_IMPL_FUNC(_upsample_nearest_exact3d_backward_out_cpu) (
const Tensor& grad_output,
IntArrayRef output_size,
IntArrayRef input_size,
c10::optional<double> scales_d,
c10::optional<double> scales_h,
c10::optional<double> scales_w,
const Tensor& grad_input) {
grad_input.zero_();
_upsample_nearest_exact3d_backward_kernel(kCPU, grad_input, grad_output, scales_d, scales_h, scales_w);
}
// vec variants
using at::native::upsample::compute_output_size;
using at::native::upsample::get_scale_value;
Tensor upsample_nearest3d_cpu(
const Tensor& input,
c10::optional<IntArrayRef> output_size,
c10::optional<ArrayRef<double>> scale_factors) {
auto osize = compute_output_size(input.sizes(), output_size, scale_factors);
auto scale_d = get_scale_value(scale_factors, 0);
auto scale_h = get_scale_value(scale_factors, 1);
auto scale_w = get_scale_value(scale_factors, 2);
return at::upsample_nearest3d(input, osize, scale_d, scale_h, scale_w);
}
Tensor _upsample_nearest_exact3d_cpu(
const Tensor& input,
c10::optional<IntArrayRef> output_size,
c10::optional<ArrayRef<double>> scale_factors) {
auto osize = compute_output_size(input.sizes(), output_size, scale_factors);
auto scale_d = get_scale_value(scale_factors, 0);
auto scale_h = get_scale_value(scale_factors, 1);
auto scale_w = get_scale_value(scale_factors, 2);
return at::_upsample_nearest_exact3d(input, osize, scale_d, scale_h, scale_w);
}
// when structured kernels can handle QuantizedCPU, update these overloads to be CompositeExplicitAutograd
Tensor upsample_nearest3d_backward_cpu(
const Tensor& grad_output,
c10::optional<IntArrayRef> output_size,
IntArrayRef input_size,
c10::optional<ArrayRef<double>> scale_factors) {
auto osize = compute_output_size(input_size, output_size, scale_factors);
auto scale_d = get_scale_value(scale_factors, 0);
auto scale_h = get_scale_value(scale_factors, 1);
auto scale_w = get_scale_value(scale_factors, 2);
return at::upsample_nearest3d_backward(grad_output, osize, input_size, scale_d, scale_h, scale_w);
}
Tensor _upsample_nearest_exact3d_backward_cpu(
const Tensor& grad_output,
c10::optional<IntArrayRef> output_size,
IntArrayRef input_size,
c10::optional<ArrayRef<double>> scale_factors) {
auto osize = compute_output_size(input_size, output_size, scale_factors);
auto scale_d = get_scale_value(scale_factors, 0);
auto scale_h = get_scale_value(scale_factors, 1);
auto scale_w = get_scale_value(scale_factors, 2);
return at::_upsample_nearest_exact3d_backward(grad_output, osize, input_size, scale_d, scale_h, scale_w);
}
DEFINE_DISPATCH(upsample_nearest3d_kernel);
DEFINE_DISPATCH(_upsample_nearest_exact3d_kernel);
DEFINE_DISPATCH(upsample_nearest3d_backward_kernel);
DEFINE_DISPATCH(_upsample_nearest_exact3d_backward_kernel);
} // namespace native
} // namespace at