forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathUpSampleBicubic2d.cpp
316 lines (271 loc) · 10.4 KB
/
UpSampleBicubic2d.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
#include <ATen/ATen.h>
#include <ATen/NativeFunctions.h>
#include <ATen/native/UpSample.h>
#include <c10/util/irange.h>
namespace at {
namespace meta {
TORCH_META_FUNC(upsample_bicubic2d) (
const Tensor& input, IntArrayRef output_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w
) {
auto full_output_size = native::upsample_2d_common_check(input.sizes(), output_size);
// Allow for empty batch size but not other dimensions
TORCH_CHECK(
input.numel() != 0 || c10::multiply_integers(input.sizes().begin() + 1, input.sizes().end()),
"Non-empty 4D data tensor expected but got a tensor with sizes ",
input.sizes());
set_output(full_output_size, input.options());
}
TORCH_META_FUNC(upsample_bicubic2d_backward) (
const Tensor& grad_output,
IntArrayRef output_size,
IntArrayRef input_size,
bool align_corners,
c10::optional<double> scales_h,
c10::optional<double> scales_w
) {
auto full_output_size = native::upsample_2d_common_check(input_size, output_size);
TORCH_CHECK(
grad_output.dim() == 4,
"Expected grad_output to be a tensor of dimension 4 but got: dimension ", grad_output.dim());
for (const auto i : c10::irange(4)) {
TORCH_CHECK(
grad_output.size(i) == full_output_size[i],
"Expected grad_output to have the same shape as output;",
" output.size(", i, ") = ", full_output_size[i],
" but got grad_output.size(", i, ") = ", grad_output.size(i));
}
set_output(input_size, grad_output.options());
}
TORCH_META_FUNC(_upsample_bicubic2d_aa) (
const Tensor& input, IntArrayRef output_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w
) {
auto full_output_size = native::upsample_2d_common_check(input.sizes(), output_size);
// Allow for empty batch size but not other dimensions
TORCH_CHECK(
input.numel() != 0 || c10::multiply_integers(input.sizes().begin() + 1, input.sizes().end()),
"Non-empty 4D data tensor expected but got a tensor with sizes ",
input.sizes());
set_output(full_output_size, input.options());
}
TORCH_META_FUNC(_upsample_bicubic2d_aa_backward) (
const Tensor& grad_output,
IntArrayRef output_size,
IntArrayRef input_size,
bool align_corners,
c10::optional<double> scales_h,
c10::optional<double> scales_w
) {
auto full_output_size = native::upsample_2d_common_check(input_size, output_size);
TORCH_CHECK(
grad_output.dim() == 4,
"Expected grad_output to be a tensor of dimension 4 but got: dimension ", grad_output.dim());
for (const auto i : c10::irange(4)) {
TORCH_CHECK(
grad_output.size(i) == full_output_size[i],
"Expected grad_output to have the same shape as output;",
" output.size(", i, ") = ", full_output_size[i],
" but got grad_output.size(", i, ") = ", grad_output.size(i));
}
set_output(input_size, grad_output.options());
}
} // namespace meta
namespace native {
namespace {
template <typename scalar_t>
static void upsample_bicubic2d_backward_out_frame(
scalar_t* odata,
scalar_t* idata,
int64_t input_height,
int64_t input_width,
int64_t output_height,
int64_t output_width,
int64_t nbatch,
int64_t channels,
bool align_corners,
c10::optional<double> scales_h,
c10::optional<double> scales_w) {
channels = channels * nbatch;
// Special case: input/output same size, just copy
if (input_height == output_height && input_width == output_width) {
for (const auto output_y : c10::irange(output_height)) {
for (const auto output_x : c10::irange(output_width)) {
scalar_t* in = &idata[output_y * input_width + output_x];
scalar_t* out = &odata[output_y * output_width + output_x];
for (const auto c : c10::irange(channels)) {
(void)c; //Suppress unused variable warning
in[0] = out[0];
in += input_width * input_height;
out += output_width * output_height;
}
}
}
return;
}
const scalar_t height_scale = area_pixel_compute_scale<scalar_t>(
input_height, output_height, align_corners, scales_h);
const scalar_t width_scale = area_pixel_compute_scale<scalar_t>(
input_width, output_width, align_corners, scales_w);
for (const auto output_y : c10::irange(output_height)) {
for (const auto output_x : c10::irange(output_width)) {
scalar_t* in = idata;
scalar_t* out = odata;
const scalar_t real_x = area_pixel_compute_source_index(width_scale, output_x, align_corners, /*cubic=*/true);
int64_t input_x = floorf(real_x);
scalar_t t_x = real_x - input_x;
const scalar_t real_y = area_pixel_compute_source_index(height_scale, output_y, align_corners, /*cubic=*/true);
int64_t input_y = floorf(real_y);
scalar_t t_y = real_y - input_y;
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
scalar_t x_coeffs[4];
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
scalar_t y_coeffs[4];
get_cubic_upsample_coefficients<scalar_t>(x_coeffs, t_x);
get_cubic_upsample_coefficients<scalar_t>(y_coeffs, t_y);
for (const auto c : c10::irange(channels)) {
(void)c; //Suppress unused variable warning
scalar_t out_value = out[output_y * output_width + output_x];
for (const auto i : c10::irange(4)) {
for (const auto j : c10::irange(4)) {
upsample_increment_value_bounded<scalar_t>(
in,
input_width,
input_height,
input_x - 1 + i,
input_y - 1 + j,
out_value * y_coeffs[j] * x_coeffs[i]);
}
}
in += input_width * input_height;
out += output_width * output_height;
}
}
}
}
static void upsample_bicubic2d_backward_kernel(
const Tensor& grad_input,
const Tensor& grad_output_,
IntArrayRef output_size,
IntArrayRef input_size,
bool align_corners,
c10::optional<double> scales_h,
c10::optional<double> scales_w) {
int64_t output_height = output_size[0];
int64_t output_width = output_size[1];
int64_t nbatch = input_size[0];
int64_t channels = input_size[1];
int64_t input_height = input_size[2];
int64_t input_width = input_size[3];
auto grad_output = grad_output_.contiguous();
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
grad_output.scalar_type(), "upsample_bicubic2d_backward", [&] {
scalar_t* idata = grad_input.data_ptr<scalar_t>();
scalar_t* odata = grad_output.data_ptr<scalar_t>();
upsample_bicubic2d_backward_out_frame<scalar_t>(
odata,
idata,
input_height,
input_width,
output_height,
output_width,
nbatch,
channels,
align_corners,
scales_h,
scales_w);
});
}
} // namespace
TORCH_IMPL_FUNC(upsample_bicubic2d_out_cpu) (
const Tensor& input,
IntArrayRef output_size,
bool align_corners,
c10::optional<double> scales_h,
c10::optional<double> scales_w,
const Tensor& output
) {
upsample_bicubic2d_kernel(kCPU, output, input, align_corners, scales_h, scales_w);
}
TORCH_IMPL_FUNC(upsample_bicubic2d_backward_out_cpu) (
const Tensor& grad_output,
IntArrayRef output_size,
IntArrayRef input_size,
bool align_corners,
c10::optional<double> scales_h,
c10::optional<double> scales_w,
const Tensor& grad_input
) {
grad_input.zero_();
upsample_bicubic2d_backward_kernel(grad_input, grad_output, output_size, input_size, align_corners, scales_h, scales_w);
}
TORCH_IMPL_FUNC(_upsample_bicubic2d_aa_out_cpu) (
const Tensor& input,
IntArrayRef output_size,
bool align_corners,
c10::optional<double> scales_h,
c10::optional<double> scales_w,
const Tensor& output
) {
_upsample_bicubic2d_aa_kernel(kCPU, output, input, align_corners, scales_h, scales_w);
}
TORCH_IMPL_FUNC(_upsample_bicubic2d_aa_backward_out_cpu) (
const Tensor& grad_output,
IntArrayRef output_size,
IntArrayRef input_size,
bool align_corners,
c10::optional<double> scales_h,
c10::optional<double> scales_w,
const Tensor& grad_input
) {
grad_input.zero_();
_upsample_bicubic2d_aa_backward_kernel(kCPU, grad_input, grad_output, align_corners, scales_h, scales_w);
}
// vec variants
using at::native::upsample::compute_output_size;
using at::native::upsample::get_scale_value;
Tensor upsample_bicubic2d(
const Tensor& input,
c10::optional<IntArrayRef> output_size,
bool align_corners,
c10::optional<ArrayRef<double>> scale_factors) {
auto osize = compute_output_size(input.sizes(), output_size, scale_factors);
auto scale_h = get_scale_value(scale_factors, 0);
auto scale_w = get_scale_value(scale_factors, 1);
return at::upsample_bicubic2d(input, osize, align_corners, scale_h, scale_w);
}
Tensor upsample_bicubic2d_backward(
const Tensor& grad_output,
c10::optional<IntArrayRef> output_size,
IntArrayRef input_size,
bool align_corners,
c10::optional<ArrayRef<double>> scale_factors) {
auto osize = compute_output_size(input_size, output_size, scale_factors);
auto scale_h = get_scale_value(scale_factors, 0);
auto scale_w = get_scale_value(scale_factors, 1);
return at::upsample_bicubic2d_backward(grad_output, osize, input_size, align_corners, scale_h, scale_w);
}
Tensor _upsample_bicubic2d_aa(
const Tensor& input,
c10::optional<IntArrayRef> output_size,
bool align_corners,
c10::optional<ArrayRef<double>> scale_factors) {
auto osize = compute_output_size(input.sizes(), output_size, scale_factors);
auto scale_h = get_scale_value(scale_factors, 0);
auto scale_w = get_scale_value(scale_factors, 1);
return at::_upsample_bicubic2d_aa(input, osize, align_corners, scale_h, scale_w);
}
Tensor _upsample_bicubic2d_aa_backward(
const Tensor& grad_output,
c10::optional<IntArrayRef> output_size,
IntArrayRef input_size,
bool align_corners,
c10::optional<ArrayRef<double>> scale_factors) {
auto osize = compute_output_size(input_size, output_size, scale_factors);
auto scale_h = get_scale_value(scale_factors, 0);
auto scale_w = get_scale_value(scale_factors, 1);
return at::_upsample_bicubic2d_aa_backward(grad_output, osize, input_size, align_corners, scale_h, scale_w);
}
DEFINE_DISPATCH(upsample_bicubic2d_kernel);
DEFINE_DISPATCH(_upsample_bicubic2d_aa_kernel);
DEFINE_DISPATCH(_upsample_bicubic2d_aa_backward_kernel);
} // namespace native
} // namespace at