forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathUnique.cpp
296 lines (260 loc) · 10.1 KB
/
Unique.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
// Returns unique elements of input tensor.
#include <ATen/ATen.h>
#include <ATen/Dispatch.h>
#include <c10/util/irange.h>
#include <set>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
namespace std {
template<> struct hash<at::BFloat16>
{
size_t operator()(const at::BFloat16& v) const noexcept
{
return std::hash<uint16_t>()(v.x);
}
};
}
namespace at {
namespace native{
namespace {
template <typename scalar_t>
std::tuple<Tensor, Tensor, Tensor> unique_cpu_template(
const Tensor& self,
const bool sorted,
const bool return_inverse,
const bool return_counts) {
const Tensor& input = self.contiguous();
const scalar_t* input_data = input.data_ptr<scalar_t>();
int64_t numel = input.numel();
Tensor output;
Tensor inverse_indices = at::empty({0}, self.options().dtype(kLong));
Tensor counts = at::empty({0}, self.options().dtype(kLong));
std::unordered_set<scalar_t> set(input_data, input_data + numel);
output = at::empty({static_cast<int64_t>(set.size())}, input.options());
scalar_t *output_data = output.data_ptr<scalar_t>();
if (sorted) {
std::vector<scalar_t> vec(set.begin(), set.end());
std::sort(vec.begin(), vec.end());
std::copy(vec.begin(), vec.end(), output_data);
} else {
std::copy(set.begin(), set.end(), output_data);
}
if (return_inverse || return_counts) {
inverse_indices.resize_(input.sizes());
int64_t* inverse_indices_data = inverse_indices.data_ptr<int64_t>();
std::unordered_map<scalar_t, int64_t> inverse_map;
inverse_map.reserve(output.numel());
for (const auto i : c10::irange(output.numel())) {
inverse_map[output_data[i]] = i;
}
for (const auto i : c10::irange(numel)) {
inverse_indices_data[i] = inverse_map[input_data[i]];
}
if (return_counts) {
std::unordered_map<scalar_t, int64_t> counts_map;
counts_map.reserve(output.numel());
for (const auto i : c10::irange(output.numel())) {
counts_map[output_data[i]] = 0;
}
for (const auto i : c10::irange(numel)) {
counts_map[input_data[i]] += 1;
}
counts.resize_(output.sizes());
counts.fill_(0);
int64_t *counts_data = counts.data_ptr<int64_t>();
for (const auto i : c10::irange(output.numel())) {
counts_data[i] = counts_map[output_data[i]];
}
}
}
return std::make_tuple(output, inverse_indices, counts);
}
template <typename scalar_t>
std::tuple<Tensor, Tensor, Tensor> unique_consecutive_cpu_template(
const Tensor& self,
const bool return_inverse,
const bool return_counts) {
const Tensor& input = self.contiguous();
const scalar_t* input_data = input.data_ptr<scalar_t>();
int64_t numel = input.numel();
Tensor output = at::empty({numel}, input.options());
Tensor inverse_indices = at::empty({0}, self.options().dtype(kLong));
Tensor counts = at::empty({0}, self.options().dtype(kLong));
if (return_inverse) {
inverse_indices.resize_(input.sizes());
}
if (numel > 0) {
scalar_t *output_data = output.data_ptr<scalar_t>();
int64_t *inverse_data = inverse_indices.data_ptr<int64_t>();;
int64_t *counts_data = nullptr;
*output_data = *input_data;
if (return_counts) {
counts.resize_({numel});
counts_data = counts.data_ptr<int64_t>();
}
scalar_t *p = output_data;
int64_t *q = counts_data;
int64_t last = 0;
if (return_inverse) {
inverse_data[0] = 0;
}
for (const auto i : c10::irange(1, numel)) {
if (input_data[i] != *p) {
*(++p) = input_data[i];
if (return_counts) {
*(q++) = i - last;
last = i;
}
}
if (return_inverse) {
inverse_data[i] = p - output_data;
}
}
int64_t output_size = p - output_data + 1;
if (return_counts) {
*q = numel - last;
counts.resize_({output_size});
}
output.resize_({output_size});
}
return std::make_tuple(output, inverse_indices, counts);
}
template<class ForwardIt>
ForwardIt _unique_dim_cpu_impl(ForwardIt first, ForwardIt last,
std::vector<int64_t>& indices, Tensor inverse_indices_vec, Tensor counts) {
if (first == last) {
return last;
}
TORCH_INTERNAL_ASSERT(inverse_indices_vec.is_contiguous(),
"_unique_dim_cpu_impl only support contiguous inverse_indices_vec");
TORCH_INTERNAL_ASSERT(counts.is_contiguous(),
"_unique_dim_cpu_impl only support contiguous counts");
int64_t *indices_data = indices.data();
int64_t *inverse_data = inverse_indices_vec.data_ptr<int64_t>();
int64_t *counts_data = counts.data_ptr<int64_t>();
ForwardIt result = first;
ForwardIt previous = first;
int64_t *current_counts = counts_data;
inverse_data[*(indices_data++)] = 0;
for (ForwardIt current = std::next(first); current != last; current++) {
if (!at::equal(*current, *result)) {
*(++result) = std::move(*current);
*(current_counts++) = std::distance(previous, current);
previous = current;
}
inverse_data[*(indices_data++)] = std::distance(first, result);
}
*current_counts = std::distance(previous, last);
return ++result;
}
template <typename scalar_t>
std::tuple<Tensor, Tensor, Tensor> _unique_dim_cpu_template(
const Tensor& self,
const int64_t dim,
const bool consecutive,
const bool return_inverse,
const bool return_counts) {
auto sizes = self.sizes().vec();
// check how many zero dimensions exist
auto num_zero_dims = std::count(sizes.begin(), sizes.end(), 0);
// tensor is not well formed as it has 0 sized dimensions
if (self.size(dim) == 0){
TORCH_CHECK(
num_zero_dims == 1,
"Number of zero sized dimensions is more than one, so unique cannot be applied ")
Tensor output = at::empty({0}, self.options());
Tensor inverse_indices =
at::empty({0}, self.options().dtype(kLong));
Tensor counts = at::empty({0}, self.options().dtype(kLong));
return std::make_tuple(output, inverse_indices, counts);
}
TORCH_CHECK(num_zero_dims == 0,
"There are 0 sized dimensions, and they aren't selected, so unique cannot be applied");
// reshape tensor as [dim, -1]
Tensor input_flat = self.transpose(dim, 0);
auto orig_sizes = input_flat.sizes().vec();
input_flat = input_flat.contiguous().view({input_flat.size(0), -1});
std::vector<int64_t> indices(input_flat.size(0));
std::iota(indices.begin(), indices.end(), 0);
int64_t numel = input_flat.size(1);
scalar_t* input_flat_ptr = ((scalar_t*)input_flat.data_ptr());
// sort indices using data
if (!consecutive) {
std::sort(indices.begin(), indices.end(),
[&](int64_t a, int64_t b) -> bool {
for (const auto i : c10::irange(numel)) {
scalar_t lhs = input_flat_ptr[i + a * numel];
scalar_t rhs = input_flat_ptr[i + b * numel];
if (lhs < rhs) {
return true;
} else if (lhs > rhs) {
return false;
}
}
return false;
});
}
Tensor input_sorted;
if (!consecutive) {
input_sorted = at::empty(input_flat.sizes(), input_flat.options());
for (const auto i : c10::irange(indices.size())) {
input_sorted[i] = input_flat[indices[i]];
}
} else {
input_sorted = input_flat;
}
Tensor inverse_indices = at::empty(indices.size(), self.options().dtype(kLong));
Tensor counts = at::zeros(indices.size(), self.options().dtype(kLong));
std::vector<Tensor> input_unbind = at::unbind(input_sorted, 0);
auto last = _unique_dim_cpu_impl(
input_unbind.begin(), input_unbind.end(), indices, inverse_indices, counts);
input_unbind.erase(last, input_unbind.end());
counts = at::narrow(counts, 0, 0, input_unbind.size());
// reshape back
auto output = at::stack(input_unbind, 0);
auto new_sizes = std::vector<int64_t>(orig_sizes);
new_sizes[0] = -1;
output = output.view(new_sizes);
output = output.transpose(0, dim);
return std::make_tuple(output, inverse_indices, counts);
}
} // namespace
std::tuple<Tensor, Tensor>
_unique_cpu(const Tensor& self, const bool sorted, const bool return_inverse) {
return AT_DISPATCH_ALL_TYPES_AND2(at::ScalarType::BFloat16, at::ScalarType::Bool, self.scalar_type(), "unique", [&] {
Tensor output, inverse;
std::tie(output, inverse, std::ignore) = unique_cpu_template<scalar_t>(self, sorted, return_inverse, false);
return std::make_tuple(output, inverse);
});
}
std::tuple<Tensor, Tensor, Tensor>
_unique2_cpu(const Tensor& self, const bool sorted, const bool return_inverse, const bool return_counts) {
return AT_DISPATCH_ALL_TYPES_AND2(at::ScalarType::BFloat16, at::ScalarType::Bool, self.scalar_type(), "unique", [&] {
return unique_cpu_template<scalar_t>(self, sorted, return_inverse, return_counts);
});
}
std::tuple<Tensor, Tensor, Tensor>
unique_dim_cpu(const Tensor& self, const int64_t dim, const bool sorted, const bool return_inverse, const bool return_counts) {
return AT_DISPATCH_ALL_TYPES_AND2(at::ScalarType::BFloat16, at::ScalarType::Bool, self.scalar_type(), "unique_dim", [&] {
// The current implementation using `dim` always sorts due to unhashable tensors
return _unique_dim_cpu_template<scalar_t>(self, dim, false, return_inverse, return_counts);
});
}
std::tuple<Tensor, Tensor, Tensor>
unique_dim_consecutive_cpu(const Tensor& self, const int64_t dim, const bool return_inverse, const bool return_counts) {
return AT_DISPATCH_ALL_TYPES_AND2(at::ScalarType::BFloat16, at::ScalarType::Bool, self.scalar_type(), "unique_dim", [&] {
return _unique_dim_cpu_template<scalar_t>(self, dim, true, return_inverse, return_counts);
});
}
std::tuple<Tensor, Tensor, Tensor>
unique_consecutive_cpu(const Tensor& self, const bool return_inverse, const bool return_counts, c10::optional<int64_t> dim) {
if (!dim.has_value() || (dim.value() == 0 && self.dim() == 1)) {
return AT_DISPATCH_ALL_TYPES_AND2(at::ScalarType::BFloat16, at::ScalarType::Bool, self.scalar_type(), "unique", [&] {
return unique_consecutive_cpu_template<scalar_t>(self, return_inverse, return_counts);
});
}
return unique_dim_consecutive_cpu(self, dim.value(), return_inverse, return_counts);
}
} // namespace native
} // namespace at