forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathNormalization.cpp
708 lines (611 loc) · 29.9 KB
/
Normalization.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
#include <ATen/ATen.h>
#include <ATen/NativeFunctions.h>
#include <ATen/AccumulateType.h>
#include <ATen/CPUApplyUtils.h>
#include <ATen/Parallel.h>
#include <ATen/Config.h>
#include <ATen/detail/CUDAHooksInterface.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/cpu/Loops.h>
#include <ATen/native/batch_norm.h>
#include <ATen/native/Normalization.h>
#include <c10/util/irange.h>
#include <vector>
static const int MIOPEN_DIM_MAX = 5;
namespace at {
namespace meta {
TORCH_META_FUNC(renorm)(const Tensor& self, const Scalar& p, int64_t dim, const Scalar& maxnorm) {
TORCH_CHECK(!p.isComplex(), "renorm: p must be real-valued");
TORCH_CHECK(p.toDouble() > 0.0, "renorm: non-positive-norm not supported");
TORCH_CHECK(!maxnorm.isComplex(), "renorm: maxnorm must be real-valued");
TORCH_CHECK(maxnorm.toDouble() >= 0.0,
"renorm: expected maxnorm to be >= 0 but got ", maxnorm.toDouble());
const auto ndim = self.dim();
TORCH_CHECK(ndim > 1, "renorm: input needs at least 2 dimensions, got ", ndim, "dimensions");
set_output(self.sizes(), self.options());
}
} // namespace meta
namespace native {
DEFINE_DISPATCH(batch_norm_cpu_stub);
DEFINE_DISPATCH(batch_norm_cpu_collect_stats_stub);
DEFINE_DISPATCH(batch_norm_cpu_backward_stub);
DEFINE_DISPATCH(renorm_scale_factor_stub);
namespace {
void check_dims_match_num_input_features(const char* arg_name, int64_t expected, int64_t actual){
TORCH_CHECK(actual == expected,
arg_name, " should contain ", expected, " elements not ", actual);
}
static inline Tensor repeat_if_defined(const Tensor& t, int64_t repeat) {
if (t.defined()) {
return t.repeat(repeat);
}
return t;
}
}
template<typename T>
struct InvStd {
T operator()(T var, double epsilon) const {
T invstd = 0;
if (var != static_cast<T>(0) || epsilon != static_cast<T>(0)) {
invstd = static_cast<T>(1) / std::sqrt(var + epsilon);
}
return invstd;
}
};
template<typename T>
struct Var {
T operator()(T var, double epsilon) const {
return var;
}
};
static inline bool is_contiguous(const Tensor& t) {
return t.is_contiguous() || t.is_contiguous(at::MemoryFormat::ChannelsLast);
}
// For some ambiguous cases, it is possible a channels last contiguous Tensor has
// `suggest_memory_format` of Contiguous.
// See https://github.com/pytorch/pytorch/issues/63224 for details.
static inline MemoryFormat suggest_memory_format_contig(const Tensor& t) {
return t.is_contiguous() ? at::MemoryFormat::Contiguous : at::MemoryFormat::ChannelsLast;
}
template<typename scalar_t>
std::tuple<Tensor,Tensor,Tensor> batch_norm_cpu_transform_input_template(
const Tensor& input, const Tensor& weight, const Tensor& bias,
const Tensor& save_mean /* optional */, const Tensor& save_invstd /* optional */,
const Tensor& running_mean /* optional */, const Tensor& running_var /* optional */,
bool train, double eps) {
bool all_contiguous = is_contiguous(input)
&& (!weight.defined() || weight.is_contiguous())
&& (!bias.defined() || bias.is_contiguous())
&& running_mean.is_contiguous()
&& running_var.is_contiguous();
// inference contiguous path
if (all_contiguous) {
Tensor output = at::empty_like(input, suggest_memory_format_contig(input));
batch_norm_cpu_stub(kCPU, output, input, weight, bias,
save_mean, save_invstd, running_mean, running_var, train, eps);
return std::make_tuple(output, save_mean, save_invstd);
}
const int64_t ndim = input.dim();
// Helper to convert 1d tensors to an nd tensor that broadcasts with input
// All elements go into the channel dimension
DimVector sizes(ndim, 1), strides(ndim, 0);
auto as_nd = [&](const Tensor& t) {
TORCH_INTERNAL_ASSERT(t.defined() && t.dim() == 1);
sizes[1] = t.sizes()[0];
strides[1] = t.strides()[0];
return t.as_strided(sizes, strides);
};
auto mean = as_nd(train ? save_mean : running_mean);
auto invstd = as_nd([&]{
if (train) {
return save_invstd;
} else {
return 1 / at::sqrt(running_var + eps);
}
}());
auto w = weight.defined() ? as_nd(weight) :
at::detail::scalar_tensor_static(1, input.scalar_type(), kCPU);
auto b = bias.defined() ? as_nd(bias) :
at::detail::scalar_tensor_static(0, input.scalar_type(), kCPU);
Tensor output = at::empty_like(input, input.suggest_memory_format());
auto iter = TensorIteratorConfig()
.add_output(output)
.add_input(input)
.add_input(mean)
.add_input(invstd)
.add_input(w)
.add_input(b)
.build();
cpu_kernel(iter, [=](scalar_t input, scalar_t mean, scalar_t invstd, scalar_t weight, scalar_t bias) {
return ((input - mean) * invstd) * weight + bias;
});
return std::make_tuple(output, save_mean, save_invstd);
}
template<typename scalar_t, template<typename T> class VarTransform>
std::tuple<Tensor,Tensor> batch_norm_cpu_update_stats_template(
const Tensor& input, const Tensor& running_mean, const Tensor& running_var,
double momentum, double eps) {
using accscalar_t = at::acc_type<scalar_t, false>;
int64_t n_input = input.size(1);
int64_t n = input.numel() / n_input;
const int64_t ndim = input.dim();
// Reduce all dimensions except dim=1
DimVector reduce_dims(ndim - 1);
reduce_dims[0] = 0;
for (const auto i : c10::irange(2, ndim)) {
reduce_dims[i - 1] = i;
}
Tensor save_mean = at::mean(input, /*dims=*/reduce_dims);
Tensor save_var_transform = at::empty({n_input}, input.options());
auto save_mean_a = save_mean.accessor<scalar_t, 1>();
auto save_var_transform_a = save_var_transform.accessor<scalar_t, 1>();
auto running_mean_a = conditional_accessor_1d<scalar_t>(running_mean);
auto running_var_a = conditional_accessor_1d<scalar_t>(running_var);
bool all_contiguous = is_contiguous(input);
if (all_contiguous) {
auto _mean = at::empty({n_input}, input.options());
auto _var_sum = at::empty({n_input}, input.options());
auto _mean_a = _mean.accessor<scalar_t, 1>();
auto _var_sum_a = _var_sum.accessor<scalar_t, 1>();
batch_norm_cpu_collect_stats_stub(kCPU, _mean, _var_sum, input);
parallel_for(0, n_input, 1, [&](int64_t b_begin, int64_t b_end) {
for (const auto f : c10::irange(b_begin, b_end)) {
save_mean_a[f] = _mean_a[f];
save_var_transform_a[f] = VarTransform<accscalar_t>{}(_var_sum_a[f] / n, eps);
if (running_mean.defined()) {
running_mean_a[f] = momentum * _mean_a[f] + (1 - momentum) * running_mean_a[f];
}
if (running_var.defined()) {
accscalar_t unbiased_var = _var_sum_a[f] / (n - 1);
running_var_a[f] = momentum * unbiased_var + (1 - momentum) * running_var_a[f];
}
}
});
return std::make_tuple(save_mean, save_var_transform);
}
// non-contiguous path
auto channel_stride = input.strides()[1];
auto in_data = input.data_ptr<scalar_t>();
auto reduce_iter = TensorIteratorConfig()
.add_input(input)
.resize_outputs(false)
.declare_static_shape(input.sizes(), /*squash_dims=*/1)
.build();
parallel_for(0, n_input, 1, [&](int64_t b_begin, int64_t b_end) {
TensorIterator iter(reduce_iter);
for (const auto f : c10::irange(b_begin, b_end)) {
// compute variance per input
iter.unsafe_replace_operand(0, in_data + channel_stride * f);
accscalar_t var_sum = 0;
auto mean = static_cast<accscalar_t>(save_mean_a[f]);
cpu_serial_kernel(iter, [&](const scalar_t i) -> void {
var_sum += (i - mean) * (i - mean);
});
save_var_transform_a[f] = VarTransform<accscalar_t>{}(var_sum / n, eps);
// update running averages
if (running_mean.defined()) {
running_mean_a[f] = momentum * mean + (1 - momentum) * running_mean_a[f];
}
if (running_var.defined()) {
accscalar_t unbiased_var = var_sum / (n - 1);
running_var_a[f] = momentum * unbiased_var + (1 - momentum) * running_var_a[f];
}
}
});
return std::make_tuple(save_mean, save_var_transform);
}
template<typename scalar_t>
std::tuple<Tensor, Tensor, Tensor> batch_norm_backward_cpu_template(
const Tensor& grad_out_, const Tensor& input, const Tensor& weight,
const Tensor& running_mean, const Tensor& running_var, const Tensor& save_mean, const Tensor& save_invstd,
bool train, double eps, std::array<bool,3> grad_input_mask) {
using accscalar_t = at::acc_type<scalar_t, false>;
Tensor grad_input;
Tensor grad_weight;
Tensor grad_bias;
if (grad_input_mask[0]) {
grad_input = at::empty_like(input, input.suggest_memory_format());
}
if (grad_input_mask[1]) {
grad_weight = at::empty_like(weight, at::MemoryFormat::Contiguous);
}
if (grad_input_mask[2]) {
grad_bias = at::empty({input.size(1)}, input.options());
}
// since we are directly manipulating pointers in contiguous path,
// need to make sure input and grad_out have the same memory format.
bool all_contiguous = is_contiguous(input)
&& is_contiguous(grad_out_)
&& input.suggest_memory_format() == grad_out_.suggest_memory_format();
if (all_contiguous) {
if (grad_input_mask[0]) {
grad_input = at::empty_like(input, suggest_memory_format_contig(input));
}
batch_norm_cpu_backward_stub(kCPU, grad_input, grad_weight, grad_bias,
grad_out_, input, weight, running_mean, running_var, save_mean, save_invstd, train, eps);
return std::make_tuple(grad_input, grad_weight, grad_bias);
}
auto weight_a = conditional_accessor_1d<scalar_t>(weight);
auto grad_weight_a = conditional_accessor_1d<scalar_t>(grad_weight);
auto grad_bias_a = conditional_accessor_1d<scalar_t>(grad_bias);
int64_t n_input = input.size(1);
int64_t n = input.numel() / n_input;
auto save_mean_a = conditional_accessor_1d<scalar_t>(save_mean);
auto save_invstd_a = conditional_accessor_1d<scalar_t>(save_invstd);
auto running_mean_a = conditional_accessor_1d<scalar_t>(running_mean);
auto running_var_a = conditional_accessor_1d<scalar_t>(running_var);
const int64_t ndim = input.dim();
// Reduce all dimensions except dim=1
DimVector reduce_dims(ndim - 1);
reduce_dims[0] = 0;
for (const auto i : c10::irange(2, ndim)) {
reduce_dims[i - 1] = i;
}
auto sum = at::sum(grad_out_, /*dims=*/reduce_dims);
auto sum_a = sum.accessor<scalar_t, 1>();
auto reduce_iter = TensorIteratorConfig()
.add_input(input)
.add_input(grad_out_)
.resize_outputs(false)
.declare_static_shape(input.sizes(), /*squash_dims=*/1)
.build();
TensorIterator unary_iter;
TensorIterator binary_iter;
if (grad_input_mask[0]) {
unary_iter.build(
TensorIteratorConfig()
.add_output(grad_input)
.add_input(train ? input : grad_out_)
.resize_outputs(false)
.declare_static_shape(input.sizes(), /*squash_dims=*/1));
if (train) {
binary_iter.build(
TensorIteratorConfig()
.add_output(grad_input)
.add_input(grad_input)
.add_input(grad_out_)
.resize_outputs(false)
.declare_static_shape(input.sizes(), /*squash_dims=*/1));
}
}
auto in_channel_stride = input.strides()[1];
auto in_data = input.data_ptr<scalar_t>();
auto grad_in_channel_stride = grad_input_mask[0] ? grad_input.strides()[1] : 0;
auto grad_in_data = grad_input_mask[0] ? grad_input.data_ptr<scalar_t>() : nullptr;
auto grad_out_channel_stride = grad_out_.strides()[1];
auto grad_out_data = grad_out_.data_ptr<scalar_t>();
parallel_for(0, n_input, 1, [&](int64_t b_begin, int64_t b_end) {
TensorIterator reduce_iter_local(reduce_iter);
TensorIterator unary_iter_local(unary_iter);
TensorIterator binary_iter_local(binary_iter);
for (const auto f : c10::irange(b_begin, b_end)) {
scalar_t w = weight.defined() ? weight_a[f] : 1;
scalar_t mean, invstd;
if (train) {
mean = save_mean_a[f];
invstd = save_invstd_a[f];
} else {
mean = running_mean_a[f];
invstd = 1 / std::sqrt(running_var_a[f] + eps);
}
// dot product of the Q(X) and gradOuput
accscalar_t dotp = 0;
reduce_iter_local.unsafe_replace_operand(
0, in_data + f * in_channel_stride);
reduce_iter_local.unsafe_replace_operand(
1, grad_out_data + f * grad_out_channel_stride);
cpu_serial_kernel(reduce_iter_local, [&](const scalar_t i, const scalar_t go) -> void {
dotp += (i - mean) * go;
});
if (grad_input_mask[0]) {
if (train) {
// when in training mode
// Q(X) = X - E[x] ; i.e. input centered to zero mean
// Y = Q(X) / sigma ; i.e. BN output before weight and bias
// dL/dX = (Q(dL/dY) - dot(Y, dL/dY) * Y) / sigma * w
// projection of gradOutput on to output scaled by std
scalar_t k = (scalar_t) dotp * invstd * invstd / n;
{
unary_iter_local.unsafe_replace_operand(
0, grad_in_data + f * grad_in_channel_stride);
unary_iter_local.unsafe_replace_operand(
1, in_data + f * in_channel_stride);
cpu_serial_kernel(unary_iter_local, [&](const scalar_t i) -> scalar_t {
return (i - mean) * k;
});
}
scalar_t grad_mean = sum_a[f] / n;
{
auto gI_data = grad_in_data + f * grad_in_channel_stride;
binary_iter_local.unsafe_replace_operand(0, gI_data);
binary_iter_local.unsafe_replace_operand(1, gI_data);
binary_iter_local.unsafe_replace_operand(
2, grad_out_data + f * grad_out_channel_stride);
cpu_serial_kernel(binary_iter_local, [&](scalar_t gi, scalar_t go) -> scalar_t {
return (go - grad_mean - gi) * invstd * w;
});
}
} else {
// when in evaluation mode
// Q(X) = X - running_mean ; i.e. input centered to zero mean
// Y = Q(X) / running_std ; i.e. BN output before weight and bias
// dL/dX = w / running_std
{
unary_iter_local.unsafe_replace_operand(
0, grad_in_data + f * grad_in_channel_stride);
unary_iter_local.unsafe_replace_operand(
1, grad_out_data + f * grad_out_channel_stride);
cpu_serial_kernel(unary_iter_local, [&](const scalar_t i) -> scalar_t {
return i * invstd * w;
});
}
}
}
if (grad_input_mask[1]) {
grad_weight_a[f] = dotp * invstd;
}
if (grad_input_mask[2]) {
grad_bias_a[f] = sum_a[f];
}
}
});
return std::make_tuple(grad_input, grad_weight, grad_bias);
}
// _batch_norm_impl_index(_backward) are used in the JIT be able to keep the run-time selection
// of backends, while enabling it to keep the information about the used backend, so that it can
// use its corresponding backward implementation.
// XXX: The indices of backends need to be kept synchronized between this function and its _backward.
std::tuple<Tensor, Tensor, Tensor, Tensor, int64_t> _batch_norm_impl_index(
const Tensor& input, const c10::optional<Tensor>& weight_opt /* optional */, const c10::optional<Tensor>& bias_opt /* optional */, const c10::optional<Tensor>& running_mean_opt /* optional */, const c10::optional<Tensor>& running_var_opt /* optional */,
bool training, double momentum, double eps, bool cudnn_enabled) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> weight_maybe_owned = at::borrow_from_optional_tensor(weight_opt);
const Tensor& weight = *weight_maybe_owned;
const Tensor& bias = c10::value_or_else(bias_opt, [] {return Tensor();});
const Tensor& running_mean = c10::value_or_else(running_mean_opt, [] {return Tensor();});
const Tensor& running_var = c10::value_or_else(running_var_opt, [] {return Tensor();});
auto num_features = input.sizes()[1];
if (input.numel() == 0) {
Tensor reserve = at::empty({0}, input.options().dtype(kByte));
auto options = input.options().dtype(
at::toAccumulateType(input.scalar_type(), /*is_cuda=*/input.is_cuda()));
auto save_mean = at::empty({num_features}, options);
auto save_invstd = at::empty({num_features}, options);
// don't return view of input, don't return empty tensor because it will break gradient chain
auto out = input.clone();
if (weight.defined()) out = out * weight[0];
if (bias.defined()) out = out + bias[0];
return std::tuple<Tensor, Tensor, Tensor, Tensor, int64_t>(
out, save_mean, save_invstd, reserve, 0);
}
if (running_mean.defined()) {
check_dims_match_num_input_features("running_mean", num_features, running_mean.numel());
} else if (!training) {
AT_ERROR("running_mean must be defined in evaluation mode");
}
if (running_var.defined()) {
check_dims_match_num_input_features("running_var", num_features, running_var.numel());
} else if (!training) {
AT_ERROR("running_var must be defined in evaluation mode");
}
if (weight.defined()) {
check_dims_match_num_input_features("weight", num_features, weight.numel());
}
if (bias.defined()) {
check_dims_match_num_input_features("bias", num_features, bias.numel());
}
const bool use_cudnn = (
input.is_cuda()
&& input.scalar_type() != at::kBFloat16 && weight.scalar_type() != at::kBFloat16
&& (input.scalar_type() != at::kHalf
|| weight.scalar_type() == at::kFloat)
&& weight.defined() && bias.defined()
&& ((running_mean.defined() && running_var.defined())
|| (!running_mean.defined() && !running_var.defined() && training))
&& (input.dim() >= 3)
&& ((input.size(0) <= 880801 && training) // spatial, training
||(input.size(0) <= 65535 && !training)) //spatial, eval
&& detail::getCUDAHooks().compiledWithCuDNN()
&& eps >= detail::getCUDAHooks().batchnormMinEpsilonCuDNN()
&& cudnn_enabled && detail::getCUDAHooks().versionCuDNN() >= 5110L);
if (use_cudnn) {
auto input_c = input.contiguous(input.suggest_memory_format());
auto weight_c = weight.contiguous();
auto bias_c = bias.contiguous();
auto rmean_c = running_mean.defined() ? running_mean.contiguous() : running_mean;
auto rvar_c = running_var.defined() ? running_var.contiguous() : running_var;
Tensor output, save_mean, save_var, reserve;
std::tie(output, save_mean, save_var, reserve) =
at::cudnn_batch_norm(input_c, weight_c, bias_c, rmean_c, rvar_c,
training, momentum, eps);
return std::tuple<Tensor, Tensor, Tensor, Tensor, int64_t>(
output, save_mean, save_var, reserve, 1);
}
Tensor reserve = at::empty({0}, input.options().dtype(kByte));
bool use_miopen = (input.is_cuda()
&& input.dim() <= MIOPEN_DIM_MAX
&& input.scalar_type() != at::kDouble
&& input.scalar_type() != at::kBFloat16
&& (weight.scalar_type() != at::kHalf)
&& weight.defined() && bias.defined()
&& ((running_mean.defined() && running_var.defined())
|| (!running_mean.defined() && !running_var.defined() && training))
&& detail::getCUDAHooks().compiledWithMIOpen()
&& cudnn_enabled
);
if (use_miopen) {
return std::tuple_cat(
at::miopen_batch_norm(
input.contiguous(), weight.contiguous(), bias.contiguous(),
running_mean.defined() ? running_mean.contiguous() : running_mean,
running_var.defined() ? running_var.contiguous() : running_var,
training, momentum, eps),
std::tuple<Tensor>(reserve),
std::make_tuple(2));
}
return std::tuple_cat(
at::native_batch_norm(
input, weight, bias, running_mean, running_var, training, momentum, eps),
std::tuple<Tensor>(reserve),
std::make_tuple(0));
}
std::tuple<Tensor, Tensor, Tensor> _batch_norm_impl_index_backward(
int64_t impl_index,
const Tensor& input, const Tensor& grad_output, const c10::optional<Tensor>& weight_opt /* optional */, const c10::optional<Tensor>& running_mean_opt /* optional */, const c10::optional<Tensor>& running_var_opt /* optional */, const c10::optional<Tensor>& save_mean_opt /* optional */, const c10::optional<Tensor>& save_var_transform_opt /* optional */,
bool train, double epsilon, std::array<bool, 3> output_mask, const Tensor &reservedSpace) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> weight_maybe_owned = at::borrow_from_optional_tensor(weight_opt);
const Tensor& weight = *weight_maybe_owned;
const Tensor& running_mean = c10::value_or_else(running_mean_opt, [] {return Tensor();});
const Tensor& running_var = c10::value_or_else(running_var_opt, [] {return Tensor();});
const Tensor& save_mean = c10::value_or_else(save_mean_opt, [] {return Tensor();});
const Tensor& save_var_transform = c10::value_or_else(save_var_transform_opt, [] {return Tensor();});
if (input.numel() == 0) {
std::vector<int64_t> dims(input.dim() - 1);
dims[0] = 0;
std::iota(dims.begin() + 1, dims.end(), 2);
// don't return empty tensor because it will break gradient chain
Tensor grad_input;
Tensor grad_weight;
Tensor grad_bias;
if (output_mask[2]) {
grad_bias = grad_output.sum(dims);
}
if (output_mask[1]) {
grad_weight = (grad_output * input).sum(dims);
}
if (output_mask[0] && weight.defined()) {
grad_input = grad_output * weight[0];
}
return std::make_tuple(grad_input, grad_weight, grad_bias);
}
// backward in inference mode is not supported in cudnn, fallback to native
// TODO: verify the same thing in miopen
if (impl_index == 0 || (!train)) {
return at::native_batch_norm_backward(grad_output, input, weight, running_mean, running_var, save_mean, save_var_transform, train, epsilon, output_mask);
} else if (impl_index == 1) {
// TODO: _batch_norm_impl_index_backward is only used in JIT. cudnn NHWC
// format conversion is done inside cudnn_batch_norm_backward instead
return at::cudnn_batch_norm_backward(input, grad_output, weight, running_mean, running_var, save_mean, save_var_transform, epsilon, reservedSpace);
} else if (impl_index == 2) {
return at::miopen_batch_norm_backward(input, grad_output, weight, running_mean, running_var, save_mean, save_var_transform, epsilon);
}
TORCH_INTERNAL_ASSERT(false, "Unsupported impl_index in _batch_norm_impl_index_backward: ", impl_index);
}
Tensor batch_norm(
const Tensor& input, const c10::optional<Tensor>& weight_opt, const c10::optional<Tensor>& bias_opt,
const c10::optional<Tensor>& running_mean_opt, const c10::optional<Tensor>& running_var_opt,
bool training, double momentum, double eps, bool cudnn_enabled) {
const Tensor& weight = c10::value_or_else(weight_opt, [] {return Tensor();});
const Tensor& bias = c10::value_or_else(bias_opt, [] {return Tensor();});
const Tensor& running_mean = c10::value_or_else(running_mean_opt, [] {return Tensor();});
const Tensor& running_var = c10::value_or_else(running_var_opt, [] {return Tensor();});
return std::get<0>(at::_batch_norm_impl_index(input, weight, bias, running_mean, running_var,
training, momentum, eps, cudnn_enabled));
}
Tensor instance_norm(
const Tensor& input, const c10::optional<Tensor>& weight_opt /* optional */, const c10::optional<Tensor>& bias_opt /* optional */, const c10::optional<Tensor>& running_mean_opt /* optional */, const c10::optional<Tensor>& running_var_opt /* optional */,
bool use_input_stats, double momentum, double eps, bool cudnn_enabled) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> weight_maybe_owned = at::borrow_from_optional_tensor(weight_opt);
const Tensor& weight = *weight_maybe_owned;
const Tensor& bias = c10::value_or_else(bias_opt, [] {return Tensor();});
const Tensor& running_mean = c10::value_or_else(running_mean_opt, [] {return Tensor();});
const Tensor& running_var = c10::value_or_else(running_var_opt, [] {return Tensor();});
TORCH_CHECK(use_input_stats || (running_mean.defined() && running_var.defined()),
"Expected running_mean and running_var to be defined when use_input_stats is false");
std::vector<int64_t> shape = input.sizes().vec();
int64_t b = input.size(0);
int64_t c = input.size(1);
shape[1] = b * c;
shape[0] = 1;
Tensor weight_ = repeat_if_defined(weight, b);
Tensor bias_ = repeat_if_defined(bias, b);
Tensor running_mean_ = repeat_if_defined(running_mean, b);
Tensor running_var_ = repeat_if_defined(running_var, b);
auto input_reshaped = input.contiguous().view(shape);
auto out = at::batch_norm(input_reshaped, weight_, bias_, running_mean_, running_var_,
use_input_stats, momentum, eps, cudnn_enabled);
// we alias running_mean and running_var because they are const but we want to modify their data
if (running_mean.defined()) {
at::alias(running_mean).copy_(running_mean_.view({ b, c }).mean(0, false));
}
if (running_var.defined()) {
at::alias(running_var).copy_(running_var_.view({ b, c }).mean(0, false));
}
return out.view(input.sizes());
}
std::tuple<Tensor, Tensor> batch_norm_update_stats_cpu(
const Tensor& self, const c10::optional<Tensor>& running_mean_opt, const c10::optional<Tensor>& running_var_opt, double momentum) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> running_mean_maybe_owned = at::borrow_from_optional_tensor(running_mean_opt);
const Tensor& running_mean = *running_mean_maybe_owned;
const Tensor& running_var = c10::value_or_else(running_var_opt, [] {return Tensor();});
return AT_DISPATCH_FLOATING_TYPES(self.scalar_type(), "batch_norm_update_stats_cpu", [&] {
return batch_norm_cpu_update_stats_template<scalar_t, Var>(self, running_mean, running_var, momentum, 0);
});
}
std::tuple<Tensor, Tensor, Tensor> batch_norm_cpu(const Tensor& self, const c10::optional<Tensor>& weight_opt, const c10::optional<Tensor>& bias_opt, const c10::optional<Tensor>& running_mean_opt, const c10::optional<Tensor>& running_var_opt,
bool train, double momentum, double eps) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> weight_maybe_owned = at::borrow_from_optional_tensor(weight_opt);
const Tensor& weight = *weight_maybe_owned;
const Tensor& bias = c10::value_or_else(bias_opt, [] {return Tensor();});
const Tensor& running_mean = c10::value_or_else(running_mean_opt, [] {return Tensor();});
const Tensor& running_var = c10::value_or_else(running_var_opt, [] {return Tensor();});
checkBackend("batch_norm_cpu", {self, weight, bias, running_mean, running_var}, Backend::CPU);
return AT_DISPATCH_FLOATING_TYPES(self.scalar_type(), "batch_norm", [&] {
if (!train) {
auto save_mean = at::empty({0}, self.options());
auto save_var = at::empty({0}, self.options());
return batch_norm_cpu_transform_input_template<scalar_t>(self, weight, bias, save_mean, save_var, running_mean, running_var, train, eps);
} else {
auto save_stats = batch_norm_cpu_update_stats_template<scalar_t, InvStd>(self, running_mean, running_var, momentum, eps);
return batch_norm_cpu_transform_input_template<scalar_t>(self, weight, bias, std::get<0>(save_stats), std::get<1>(save_stats), running_mean, running_var, train, eps);
}
});
}
std::tuple<Tensor, Tensor, Tensor> batch_norm_backward_cpu(const Tensor& grad_out, const Tensor& self, const c10::optional<Tensor>& weight_opt, const c10::optional<Tensor>& running_mean_opt, const c10::optional<Tensor>& running_var_opt, const c10::optional<Tensor>& save_mean_opt, const c10::optional<Tensor>& save_invstd_opt,
bool train, double eps, std::array<bool,3> grad_input_mask) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> weight_maybe_owned = at::borrow_from_optional_tensor(weight_opt);
const Tensor& weight = *weight_maybe_owned;
const Tensor& running_mean = c10::value_or_else(running_mean_opt, [] {return Tensor();});
const Tensor& running_var = c10::value_or_else(running_var_opt, [] {return Tensor();});
const Tensor& save_mean = c10::value_or_else(save_mean_opt, [] {return Tensor();});
const Tensor& save_invstd = c10::value_or_else(save_invstd_opt, [] {return Tensor();});
return AT_DISPATCH_FLOATING_TYPES(self.scalar_type(), "batch_norm_backward_cpu", [&] {
return batch_norm_backward_cpu_template<scalar_t>(grad_out, self, weight, running_mean, running_var, save_mean, save_invstd, train, eps, grad_input_mask);
});
}
TORCH_IMPL_FUNC(renorm_out)(const Tensor& self, const Scalar& p, int64_t dim,
const Scalar& maxnorm, const Tensor& out) {
auto self_sizes = self.sizes();
dim = c10::maybe_wrap_dim(dim, self_sizes.size());
DimVector reduce_dims(self_sizes.size());
std::iota(reduce_dims.begin(), reduce_dims.end(), 0);
reduce_dims.erase(reduce_dims.begin() + dim);
// For cuda half, calculate norm in float precision then cast
// normalization factor to half
auto dtype = self.scalar_type();
auto acc_type = at::toAccumulateType(dtype, /*is_cuda=*/true);
Tensor norm;
if (acc_type != dtype) {
norm = at::linalg_vector_norm(self, p.toDouble(), reduce_dims,
/*keepdim=*/true, /*dtype=*/acc_type);
} else {
norm = at::linalg_vector_norm(self, p.toDouble(), reduce_dims,
/*keepdim=*/true);
}
auto factor = (acc_type == c10::toRealValueType(dtype)) ?
norm : at::empty(norm.sizes(), self.options());
auto iter = TensorIteratorConfig()
.add_output(factor)
.add_input(norm)
.set_check_mem_overlap(false)
.cast_common_dtype_to_outputs(true)
.build();
renorm_scale_factor_stub(iter.device_type(), iter, maxnorm.toDouble());
at::mul_outf(self, factor, const_cast<Tensor&>(out));
}
}} // at::native