-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecom.py
319 lines (223 loc) · 9.26 KB
/
recom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
#!/usr/bin/python
# -*- coding: utf-8 -*-
h= open('movie_titles.txt','r')
open_file=h.readlines()
dictionary={}
for line in open_file:
f=line.split('\n')[0].split('\t')
for element in f:
q=element.split(',')
MovieID, YearOfRelease, Title= q[0],q[1],q[2]
dictionary.setdefault(MovieID,{})
dictionary[MovieID]=Title
dictionary1=dict()
lista=[]
"""c"""
for number in xrange(11):
h= '{0:07}'.format(number)
files='mv_'+h+'.txt'
if files not in lista:
lista.append(files)
del lista[0]
for element in lista:
with open(element, 'r') as openfile:
xxx=openfile.read().splitlines()
Movie_title_semicolon= xxx[0]
Movie_title= Movie_title_semicolon[:-1]
open_contents=xxx[1:]
for x in open_contents:
a=x.split(",")
CustomerID,Ranking=a[0],float(a[1])
dictionary1.setdefault(CustomerID, {})
dictionary1[CustomerID][Movie_title]=Ranking
critics={}
for customer in dictionary1:
for movie in dictionary1[customer] or dictionary:
h=dictionary1[customer]
j=h.values()[0]
p= dictionary[movie]
critics.setdefault(customer,{})
critics[customer][p]=j
'''
for i in critics:
if len(critics[i])>4:
print i,critics[i]
'''
print "Testing :==========================================================================="
# A dictionary of movie critics and their ratings of a small
# set of movies
from math import sqrt
# Returns a distance-based similarity score for person1 and person2
def sim_distance(prefs, person1, person2):
# Get the list of shared_items
si = {}
for item in prefs[person1]:
if item in prefs[person2]: si[item] = 1
# if they have no ratings in common, return 0
if len(si) == 0: return 0
# Add up the squares of all the differences
sum_of_squares = sum([pow(prefs[person1][item] - prefs[person2][item], 2)
for item in prefs[person1] if item in prefs[person2]])
return 1 / (1 + sqrt(sum_of_squares))
#print sim_distance(critics,'1470123','491531')
# Returns the Pearson correlation coefficient for p1 and p2
def sim_pearson(prefs, p1, p2): #problem : the result always comes 0
# Get the list of mutually rated items
si = {}
for item in prefs[p1]:
if item in prefs[p2]: si[item] = 1
# if they are no ratings in common, return 0
if len(si) == 0: return 0
# Sum calculations
n = len(si)
# Sums of all the preferences
sum1 = sum([prefs[p1][it] for it in si])
sum2 = sum([prefs[p2][it] for it in si])
# Sums of the squares
sum1Sq = sum([pow(prefs[p1][it], 2) for it in si])
sum2Sq = sum([pow(prefs[p2][it], 2) for it in si])
# Sum of the products
pSum = sum([prefs[p1][it] * prefs[p2][it] for it in si])
# Calculate r (Pearson score)
num = pSum - (sum1 * sum2 / n)
den = sqrt((sum1Sq - pow(sum1, 2) / n) * (sum2Sq - pow(sum2, 2) / n))
if den == 0: return 0
r = num / den
return r
#print sim_pearson(critics,'873713','1935793')
def sim_jaccard(prefs, genre1, genre2): # Jaccard Distance (A, B) = |A intersection B| / |A union B|
# Get the list of shared_items
p1_intersect_p2 = {}
for item in prefs[genre1]:
if item in prefs[genre2]: p1_intersect_p2[item] = 1
# if they have no items in common, return 0
if len(p1_intersect_p2) == 0: return 0
# Get the list of all items that we have
p1_union_p2 = prefs[genre1]
for item in prefs[genre2]:
if item not in p1_union_p2: p1_union_p2[item] = 1
#Get the total number of items for intersection and union
p1_intersect_p2, p1_union_p2 = len(p1_intersect_p2), len(p1_union_p2)
return float(p1_intersect_p2) / float(p1_union_p2) # return jaccard distance
#print sim_jaccard(critics,'1461435','946156')
def sim_jaccard2(prefs, genre1, genre2):
#Get the list of items
genre1_movies = prefs[genre1].keys()
genre2_movies = prefs[genre2].keys()
# Make them sets in order to be able to use built-in methods of it such as intersection and union
p1, p2 = set(genre1_movies), set(genre2_movies)
p1_intersect_p2 = p1.intersection(p2)
p1_union_p2 = p1.union(p2)
#Get the total number of items for intersection and union
p1_intersect_p2, p1_union_p2 = len(p1_intersect_p2), len(p1_union_p2)
# if they have no items in common, return 0
if p1_intersect_p2 == 0: return 0
return float(p1_intersect_p2) / float(p1_union_p2) # return jaccard distance
#print sim_jaccard2(critics,'1828803','1664010')
# Returns the best matches for person from the prefs dictionary.
# Number of results and similarity function are optional params.
def topMatches(prefs, person, n=5, similarity=sim_pearson):
scores = [(similarity(prefs, person, other), other)
for other in prefs if other != person]
scores.sort()
scores.reverse()
return scores[0:n]
#print topMatches(critics,'1213178',5,sim_pearson)
# Gets recommendations for a person by using a weighted average
# of every other user's rankings
def getRecommendations(prefs, person, similarity=sim_pearson):#probelms does not recommend anything LOL
totals = {}
simSums = {}
for other in prefs:
# don't compare me to myself
if other == person: continue
sim = similarity(prefs, person, other)
# ignore scores of zero or lower
if sim <= 0: continue
for item in prefs[other]:
# only score movies I haven't seen yet
if item not in prefs[person] or prefs[person][item] == 0:
# Similarity * Score
totals.setdefault(item, 0)
totals[item] += prefs[other][item] * sim
# Sum of similarities
simSums.setdefault(item, 0)
simSums[item] += sim
# Create the normalized list
rankings = [(total / simSums[item], item) for item, total in totals.items()]
# Return the sorted list
rankings.sort()
rankings.reverse()
return rankings
#print getRecommendations(critics,'1213178',sim_distance)
def transformPrefs(prefs):
result = {}
for person in prefs:
for item in prefs[person]:
result.setdefault(item, {})
# Flip item and person
result[item][person] = prefs[person][item]
return result
#print transformPrefs(critics)
def calculateSimilarItems(prefs, n=10):
# Create a dictionary of items showing which other items they
# are most similar to.
result = {}
# Invert the preference matrix to be item-centric
itemPrefs = transformPrefs(prefs)
c = 0
for item in itemPrefs:
# Status updates for large datasets
c += 1
if c % 100 == 0: print "%d / %d" % (c, len(itemPrefs))
# Find the most similar items to this one
scores = topMatches(itemPrefs, item, n=n, similarity=sim_distance)
result[item] = scores
return result
#print calculateSimilarItems(critics,10)
def getRecommendedItems(prefs, itemMatch, user):
userRatings = prefs[user]
scores = {}
totalSim = {}
# Loop over items rated by this user
for (item, rating) in userRatings.items():
# Loop over items similar to this one
for (similarity, item2) in itemMatch[item]:
# Ignore if this user has already rated this item
if item2 in userRatings: continue
# Weighted sum of rating times similarity
scores.setdefault(item2, 0)
scores[item2] += similarity * rating
# Sum of all the similarities
totalSim.setdefault(item2, 0)
totalSim[item2] += similarity
# Divide each total score by total weighting to get an average
rankings = [(score / totalSim[item], item) for item, score in scores.items()]
# Return the rankings from highest to lowest
rankings.sort()
rankings.reverse()
return rankings
itemsim= calculateSimilarItems(critics)
#print getRecommendedItems(critics,itemsim,'1828803')
#print getRecommendations(critics,'643182',sim_distance)
#print getRecommendedItems(critics,itemsim,'643182')
while True:
Quest=raw_input("\nSelect a number or done to end:\n 1- User recommendation \n 2- Item recommendation\n")
if Quest == '1':
ID= raw_input("from above, Insert the user ID to recommend him a movie 'user-based':\n")
try:
recommended= getRecommendations(critics,'%s'%ID,sim_distance)
print "Recommended movies with the ratings are:\n",recommended
except:
print "rewrite the ID correctly please"
elif Quest == '2':
Item= raw_input("from above select the User ID to recommend him a movie according 'item-based':\n")
try:
recommended=getRecommendedItems(critics,itemsim,'%s'%Item)
print 'Recommended movies with the ratings are:\n',recommended
except:
print "rewrite the ID correctly please"
elif Quest == 'done':
break
else:
print "please try again"