-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathDHT12.cpp
511 lines (452 loc) · 15.3 KB
/
DHT12.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
/** \mainpage DHT12 sensor library
* DHT12 Sensor Library
* https://www.mischianti.org/2019/01/01/dht12-library-en/
*
* The MIT License (MIT)
*
* Copyright (c) 2017 Renzo Mischianti www.mischianti.org All right reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "DHT12.h"
#include "Wire.h"
// Default is i2c on default pin with default DHT12 address
DHT12::DHT12(void) {
_wire = &Wire;
}
DHT12::DHT12(uint8_t addressOrPin, bool oneWire) {
_isOneWire = oneWire;
if (oneWire) {
_wire = NULL;
_pin = addressOrPin;
#if !defined(__AVR) && !defined(__STM32F1__) && !defined(TEENSYDUINO)
_bit = digitalPinToBitMask(_pin);
_port = digitalPinToPort(_pin);
#endif
_maxcycles = microsecondsToClockCycles(1000); // 1 millisecond timeout for
// reading pulses from DHT sensor.
// Note that count is now ignored as the DHT reading algorithm adjusts itself
// basd on the speed of the processor.
DEBUG_PRINTLN("PIN MODE");
} else {
_wire = &Wire;
_address = addressOrPin;
DEBUG_PRINTLN("I2C MODE");
}
}
// Is not good idea use other pin for i2c as standard on Arduino you can get lag.
// The lag happens when you choose "different pins", because you are then using a
// slow software emulation of the I2C hardware. The built in I2C hardware has fixed pin assignments.
#if !defined(__AVR) && !defined(__STM32F1__) && !defined(TEENSYDUINO)
DHT12::DHT12(uint8_t sda, uint8_t scl) {
_wire = &Wire;
_isOneWire = false;
_sda = sda;
_scl = scl;
}
DHT12::DHT12(uint8_t sda, uint8_t scl, uint8_t address) {
_wire = &Wire;
_isOneWire = false;
_sda = sda;
_scl = scl;
_address = address;
}
#ifdef ESP32
///// changes for second i2c bus
DHT12::DHT12(TwoWire *pWire) {
_wire = pWire;
_isOneWire = false;
}
DHT12::DHT12(TwoWire *pWire, uint8_t address) {
_wire = pWire;
_isOneWire = false;
_address = address;
}
DHT12::DHT12(TwoWire *pWire, uint8_t sda, uint8_t scl) {
_wire = pWire;
_isOneWire = false;
_sda = sda;
_scl = scl;
}
DHT12::DHT12(TwoWire *pWire, uint8_t sda, uint8_t scl, uint8_t address) {
_wire = pWire;
_isOneWire = false;
_sda = sda;
_scl = scl;
_address = address;
}
// changes
#endif
#endif
void DHT12::begin() {
_lastreadtime = -(MIN_ELAPSED_TIME + 1);
if (_isOneWire) {
// set up the pins!
pinMode(_pin, INPUT_PULLUP);
// Using this value makes sure that millis() - lastreadtime will be
// >= MIN_INTERVAL right away. Note that this assignment wraps around,
// but so will the subtraction.
DEBUG_PRINT("Max clock cycles: ");
DEBUG_PRINTLN(_maxcycles, DEC);
} else {
#if !defined(__AVR) && !defined(__STM32F1__) && !defined(TEENSYDUINO)
_wire->begin(_sda, _scl);
#else
// Default pin for AVR some problem on software emulation
// #define SCL_PIN _scl
// #define SDA_PIN _sda
_wire->begin();
#endif
DEBUG_PRINT("I2C Inizialization: sda, scl: ");
DEBUG_PRINT(_sda);
DEBUG_PRINT(",");
DEBUG_PRINTLN(_scl);
}
}
DHT12::ReadStatus DHT12::readStatus(bool force) {
// Check if sensor was read less than two seconds ago and return early
// to use last reading.
uint32_t currenttime = millis();
if (!force && ((currenttime - _lastreadtime) < MIN_ELAPSED_TIME)) {
return _lastresult; // return last correct measurement
}
_lastreadtime = currenttime;
if (_isOneWire) {
// Reset 40 bits of received data to zero.
data[0] = data[1] = data[2] = data[3] = data[4] = 0;
// Send start signal. See DHT datasheet for full signal diagram:
// http://www.adafruit.com/datasheets/Digital%20humidity%20and%20temperature%20sensor%20AM2302.pdf
// Go into high impedence state to let pull-up raise data line level and
// start the reading process.
digitalWrite(_pin, HIGH);
delay(250);
// First set data line low for 20 milliseconds.
pinMode(_pin, OUTPUT);
digitalWrite(_pin, LOW);
delay(20);
uint32_t cycles[80];
{
// Turn off interrupts temporarily because the next sections are timing critical
// and we don't want any interruptions.
InterruptLockDht12 lock;
// End the start signal by setting data line high for 40 microseconds.
digitalWrite(_pin, HIGH);
delayMicroseconds(40);
// Now start reading the data line to get the value from the DHT sensor.
pinMode(_pin, INPUT_PULLUP);
delayMicroseconds(10); // Delay a bit to let sensor pull data line low.
// First expect a low signal for ~80 microseconds followed by a high signal
// for ~80 microseconds again.
if (expectPulse(LOW) == 0) {
DEBUG_PRINTLN(F("Timeout waiting for start signal low pulse."));
_lastresult = ERROR_TIMEOUT_LOW;
return _lastresult;
}
if (expectPulse(HIGH) == 0) {
DEBUG_PRINTLN(F("Timeout waiting for start signal high pulse."));
_lastresult = ERROR_TIMEOUT_HIGH;
return _lastresult;
}
// Now read the 40 bits sent by the sensor. Each bit is sent as a 50
// microsecond low pulse followed by a variable length high pulse. If the
// high pulse is ~28 microseconds then it's a 0 and if it's ~70 microseconds
// then it's a 1. We measure the cycle count of the initial 50us low pulse
// and use that to compare to the cycle count of the high pulse to determine
// if the bit is a 0 (high state cycle count < low state cycle count), or a
// 1 (high state cycle count > low state cycle count). Note that for speed all
// the pulses are read into a array and then examined in a later step.
for (int i = 0; i < 80; i += 2) {
cycles[i] = expectPulse(LOW);
cycles[i + 1] = expectPulse(HIGH);
}
// Inspect pulses and determine which ones are 0 (high state cycle count < low
// state cycle count), or 1 (high state cycle count > low state cycle count).
for (int i=0; i<40; ++i) {
uint32_t lowCycles = cycles[2*i];
uint32_t highCycles = cycles[2*i+1];
if ((lowCycles == 0) || (highCycles == 0)) {
DEBUG_PRINTLN(F("Timeout waiting for pulse."));
_lastresult = ERROR_TIMEOUT;
return _lastresult;
}
data[i/8] <<= 1;
// Now compare the low and high cycle times to see if the bit is a 0 or 1.
if (highCycles > lowCycles) {
// High cycles are greater than 50us low cycle count, must be a 1.
data[i/8] |= 1;
}
// Else high cycles are less than (or equal to, a weird case) the 50us low
// cycle count so this must be a zero. Nothing needs to be changed in the
// stored data.
}
DEBUG_PRINTLN(F("Received:"));
DEBUG_PRINT(data[0], HEX); DEBUG_PRINT(F(", "));
DEBUG_PRINT(data[1], HEX); DEBUG_PRINT(F(", "));
DEBUG_PRINT(data[2], HEX); DEBUG_PRINT(F(", "));
DEBUG_PRINT(data[3], HEX); DEBUG_PRINT(F(", "));
DEBUG_PRINT(data[4], HEX); DEBUG_PRINT(F(" =? "));
DEBUG_PRINTLN((data[0] + data[1] + data[2] + data[3]) & 0xFF, HEX);
DHT12::ReadStatus cks = DHT12::_checksum();
if (cks != OK) {
DEBUG_PRINTLN("CHECKSUM ERROR!");
_lastresult = cks;
return cks;
}
_lastresult = OK;
return OK;
}
// return DHT12::_readSensor(DHTLIB_DHT_WAKEUP, DHTLIB_DHT_LEADING_ZEROS);
// return DHT12::_readSensor(DHTLIB_DHT11_WAKEUP, DHTLIB_DHT11_LEADING_ZEROS);
} else {
DEBUG_PRINT("I2C START READING..");
_wire->beginTransmission(_address);
_wire->write(0);
if (_wire->endTransmission() != 0) {
DEBUG_PRINTLN("CONNECTION ERROR!");
_lastresult = ERROR_CONNECT;
return _lastresult;
}
_wire->requestFrom(_address, (uint8_t) 5);
for (uint8_t i = 0; i < 5; ++i) {
data[i] = _wire->read();
DEBUG_PRINTLN(data[i]);
}
delay(1);
if (_wire->available() != 0) {
DEBUG_PRINTLN("TIMEOUT ERROR!");
_lastresult = ERROR_TIMEOUT;
return _lastresult;
}
DHT12::ReadStatus cks = DHT12::_checksum();
if (cks != OK) {
DEBUG_PRINTLN("CHECKSUM ERROR!");
_lastresult = cks;
return cks;
}
DEBUG_PRINTLN("...READING OK");
_lastresult = OK;
return _lastresult;
}
}
bool DHT12::read(bool force) {
ReadStatus chk = DHT12::readStatus(force);
DEBUG_PRINT(F("\nRead sensor: "));
DEBUG_PRINT((chk != DHT12::OK));
switch (chk) {
case DHT12::OK:
DEBUG_PRINTLN(F("OK"));
break;
case DHT12::ERROR_CHECKSUM:
DEBUG_PRINTLN(F("Checksum error"))
;
break;
case DHT12::ERROR_TIMEOUT:
DEBUG_PRINTLN(F("Timeout error"))
;
break;
case DHT12::ERROR_TIMEOUT_HIGH:
DEBUG_PRINTLN(F("Timeout error high"))
;
break;
case DHT12::ERROR_TIMEOUT_LOW:
DEBUG_PRINTLN(F("Timeout error low"))
;
break;
case DHT12::ERROR_CONNECT:
DEBUG_PRINTLN(F("Connect error"))
;
break;
case DHT12::ERROR_ACK_L:
DEBUG_PRINTLN(F("AckL error"))
;
break;
case DHT12::ERROR_ACK_H:
DEBUG_PRINTLN(F("AckH error"))
;
break;
case DHT12::ERROR_UNKNOWN:
DEBUG_PRINTLN(F("Unknown error DETECTED"))
;
break;
case DHT12::NONE:
DEBUG_PRINTLN(F("No result"))
;
break;
default:
DEBUG_PRINTLN(F("Unknown error"))
;
break;
}
return (chk == DHT12::OK);
}
float DHT12::convertCtoF(float c) {
return c * 1.8 + 32;
}
float DHT12::convertFtoC(float f) {
return (f - 32) * 0.55555;
}
// boolean isFahrenheit: True == Fahrenheit; False == Celsius
float DHT12::computeHeatIndex(float temperature, float percentHumidity, bool isFahrenheit) {
// Using both Rothfusz and Steadman's equations
// http://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml
float hi;
if (!isFahrenheit)
temperature = convertCtoF(temperature);
hi = 0.5
* (temperature + 61.0 + ((temperature - 68.0) * 1.2)
+ (percentHumidity * 0.094));
if (hi > 79) {
hi = -42.379 + 2.04901523 * temperature + 10.14333127 * percentHumidity
+ -0.22475541 * temperature * percentHumidity
+ -0.00683783 * pow(temperature, 2)
+ -0.05481717 * pow(percentHumidity, 2)
+ 0.00122874 * pow(temperature, 2) * percentHumidity
+ 0.00085282 * temperature * pow(percentHumidity, 2)
+ -0.00000199 * pow(temperature, 2) * pow(percentHumidity, 2);
if ((percentHumidity < 13) && (temperature >= 80.0)
&& (temperature <= 112.0))
hi -= ((13.0 - percentHumidity) * 0.25)
* sqrt((17.0 - abs(temperature - 95.0)) * 0.05882);
else if ((percentHumidity > 85.0) && (temperature >= 80.0)
&& (temperature <= 87.0))
hi += ((percentHumidity - 85.0) * 0.1)
* ((87.0 - temperature) * 0.2);
}
return isFahrenheit ? hi : convertFtoC(hi);
}
float DHT12::readHumidity(bool force) {
DEBUG_PRINTLN("----------------------------");
float humidity = NAN;
if (_isOneWire) {
if (DHT12::read(force)) {
DEBUG_PRINT(data[0]);
// humidity = data[0];
humidity = (data[0] + (float) data[1] / 10);
}
} else {
if (DHT12::read(force)) {
humidity = (data[0] + (float) data[1] / 10);
}
}
return humidity;
}
// boolean S == Scale. True == Fahrenheit; False == Celsius
float DHT12::readTemperature(bool scale, bool force) {
float temperature = NAN;
if (_isOneWire) {
if (DHT12::read(force)) {
// temperature = data[2];
// if (scale) {
// temperature = convertCtoF(temperature);
// }
byte scaleValue = data[3] & B01111111;
byte signValue = data[3] & B10000000;
temperature = (data[2] + (float) scaleValue / 10);// ((data[2] & 0x7F)*256 + data[3]);
if (signValue) // negative temperature
temperature = -temperature;
if (scale) {
temperature = convertCtoF(temperature);
}
}
} else {
bool r = DHT12::read(force);
DEBUG_PRINT("READ ---> ");
DEBUG_PRINTLN(r);
if (r) {
DEBUG_PRINT("BIT 0 -> ");
DEBUG_PRINTLN(data[0], BIN);
DEBUG_PRINT("BIT 1 -> ");
DEBUG_PRINTLN(data[1], BIN);
DEBUG_PRINT("BIT 2 -> ");
DEBUG_PRINTLN(data[2], BIN);
DEBUG_PRINT("BIT 3 -> ");
DEBUG_PRINTLN(data[3], BIN);
DEBUG_PRINT("BIT 4 -> ");
DEBUG_PRINTLN(data[4], BIN);
DEBUG_PRINT("BIT 5 -> ");
DEBUG_PRINTLN(data[5], BIN);
byte scaleValue = data[3] & B01111111;
byte signValue = data[3] & B10000000;
temperature = (data[2] + (float) scaleValue / 10);// ((data[2] & 0x7F)*256 + data[3]);
if (signValue) // negative temperature
temperature = -temperature;
if (scale) {
temperature = convertCtoF(temperature);
}
}
}
return temperature;
}
#include <math.h>
// dewPoint function NOAA
// reference (1) : http://wahiduddin.net/calc/density_algorithms.htm
// reference (2) : http://www.colorado.edu/geography/weather_station/Geog_site/about.htm
//
// boolean S == Scale. True == Fahrenheit; False == Celsius
float DHT12::dewPoint(float temperature, float humidity, bool isFahrenheit) {
// sloppy but good approximation for 0 ... +70 °C with max. deviation less than 0.25 °C
float temp;
if(!isFahrenheit){
temp = temperature;
} else {
temp = convertFtoC(temperature);
}
float humi = humidity;
float ans = (temp - (14.55 + 0.114 * temp) * (1 - (0.01 * humi)) - pow(((2.5 + 0.007 * temp) * (1 - (0.01 * humi))),3) - (15.9 + 0.117 * temp) * pow((1 - (0.01 * humi)), 14));
if(!isFahrenheit){
return ans; // returns dew Point in Celsius
}
return convertCtoF(ans); // returns dew Point in Fahrenheit
}
//////// PRIVATE
DHT12::ReadStatus DHT12::_checksum() {
uint8_t sum = data[0] + data[1] + data[2] + data[3];
if (data[4] != sum)
return ERROR_CHECKSUM;
return OK;
}
// Expect the signal line to be at the specified level for a period of time and
// return a count of loop cycles spent at that level (this cycle count can be
// used to compare the relative time of two pulses). If more than a millisecond
// ellapses without the level changing then the call fails with a 0 response.
// This is adapted from Arduino's pulseInLong function (which is only available
// in the very latest IDE versions):
// https://github.com/arduino/Arduino/blob/master/hardware/arduino/avr/cores/arduino/wiring_pulse.c
uint32_t DHT12::expectPulse(bool level) {
uint32_t count = 0;
// On AVR platforms use direct GPIO port access as it's much faster and better
// for catching pulses that are 10's of microseconds in length:
#if !defined(__AVR) && !defined(__STM32F1__) && !defined(TEENSYDUINO)
uint8_t portState = level ? _bit : 0;
while ((*portInputRegister(_port) & _bit) == portState) {
if (count++ >= _maxcycles) {
return 0; // Exceeded timeout, fail.
}
}
// Otherwise fall back to using digitalRead (this seems to be necessary on ESP8266
// right now, perhaps bugs in direct port access functions?).
#else
while (digitalRead(_pin) == level) {
if (count++ >= _maxcycles) {
return 0; // Exceeded timeout, fail.
}
}
#endif
return count;
}