Skip to content

NeurIPS 2023: Towards Generic Semi-Supervised Framework for Volumetric Medical Image Segmentation

Notifications You must be signed in to change notification settings

xmed-lab/GenericSSL

Repository files navigation

[NeurIPS-2023] Towards Generic Semi-Supervised Framework for Volumetric Medical Image Segmentation

This repo is the official implementation of Towards Generic Semi-Supervised Framework for Volumetric Medical Image Segmentation which is accepted at NeurIPS-2023.

🚀 The significance of this work lies in its ability to encourage semi-supervised medical image segmentation methods to address more complex real-world application scenarios, rather than just developing frameworks in ideal experimental environments. Furthermore, we have consolidated all four settings within this single codebase, enabling the execution of any task using a single bash file by merely adjusting the arguments.

Online Presentation Video is available for brief introduction.

1. Environment

First, create a new environment and install the requirements:

conda create -n genericssl python=3.8
conda activate genericssl
cd GenericSSL/
pip install -r requirements.txt

[📌IMPORTANT] Then, before running the code, set the PYTHONPATH to pwd:

export PYTHONPATH=$(pwd)/code:$PYTHONPATH

2. Data Preparation

First, download the datasets and put them under the Datasets folder:

The file structure should be:

.
├── Datasets
│   ├── LASeg
│   │   ├── 2018LA_Seg_Training Set
│   │   │   ├── 0RZDK210BSMWAA6467LU
│   │   │   │   ├── mri_norm2.h5
│   │   │   ├── 1D7CUD1955YZPGK8XHJX
│   │   │   └── ...
│   │   ├── test.list
│   │   └── train.list
│   ├── MMWHS
│   │   ├── CT
│   │   │   ├── imagesTr
│   │   │   │   ├── ct_train_1001_image.nii.gz
│   │   │   │   └── ...
│   │   │   └── labelsTr
│   │   │   │   ├── ct_train_1001_label.nii.gz
│   │   │   │   └── ...
│   │   └── MR
│   │       ├── imagesTr
│   │       └── labelsTr
│   ├── MNMs
│   │   └── Labeled
│   │       ├── VendorA
│   │       │   ├── A0S9V9
│   │       │   │   ├── A0S9V9_sa.nii.gz
│   │       │   │   ├── A0S9V9_sa_gt.nii.gz
│   │       │   ├── A1D9Z7
│   │       │   └── ...
│   │       ├── VendorB
│   │       ├── VendorC
│   │       └── VendorD
│   ├── OpenDataset
│   │   ├── Testing
│   │   ├── Training
│   │   ├── Validation
│   │   └── mnms_dataset_info.xls
│   └── Synapse
│       ├── imagesTr
│       │   ├──img0001.nii.gz
│       │   └── ...
│       └── labelsTr
│           ├──label0001.nii.gz
│           └── ...

2.1 Pre-process LASeg dataset

Run python ./code/data/preprocess_la.py to:

  • convert .h5 files to .npy.
  • generate the labeled/unlabeled splits

2.2 Pre-process Synapse dataset

Run python ./code/data/preprocess_synapse.py to

  • resize the images and convert to .npy for faster loading;
  • generate the train/test splits (use labeled data for validation);
  • generate the labeled/unlabeled splits.

2.3 Pre-process MMWHS dataset

Run python ./code/data/preprocess_mmwhs.py to:

  • reorient to the same orientation, RAI;
  • convert to continuous labels;
  • crop centering at the heart region;
  • for each 3D cropped image top 2/% of its intensity histogram was cut off for alleviating artifacts;
  • resize and convert to .npy;
  • generate the train/validation/test splits.

2.4 Pre-process M&Ms dataset

Run python ./code/data/preprocess_mnms.py to:

  • split the original 4D data to 3D along the time axis;
  • crop and resize;
  • save to .npy;
  • generate the train/test splits (use labeled data for validation);
  • generate the labeled/unlabeled splits.

For all the pre-processing, you can comment out the functions corresponding to splits and use our pre-split files.

Finally, you will get a file structure as follow:

.
├── Synapse_data
│   ├── npy
│   │   ├── <id>_image.npy
│   │   ├── <id>_label.npy
│   │   └── ...
│   └── split_txts
│       ├── labeled_0.2.txt
│       ├── unlabeled_0.2.txt
│       ├── train.txt
│       ├── eval.txt
│       ├── test.txt
│       └── ...
├── LA_data
│   └── ...
├── MMWHS_data
│   └── ...
└── MNMS_data
    └── ...

3. Training & Testing & Evaluating

🔥🔥 This codebase allows train, test, and evaluate on all the four settings using one single bash file. 🔥🔥

Run the following commands for training, testing and evaluating.

bash train.sh -c 0 -e diffusion -t <task> -i '' -l 1e-2 -w 10 -n 300 -d true 

Parameters:

-c: use which gpu to train

-e: use which training script, can be diffusion for train_diffusion.py, or diffusion_2d for train_diffusion_2d.py

-t: switch to different tasks:
          For SSL on 5% labeled LA dataset: la_0.05
          For IBSSL on 20% labeled Synapse dataset: synapse_0.2
          For UDA on MMWHS dataset: mmwhs_ct2mr for labeled CT and unlabeled MR, mmwhs_mr2ct in opposite
          For SemiDG on M&Ms dataset, 2% labeled B,C,D -> A setting: mnms_A_0.02; 5% labeled A,B,C -> D setting: mnms_D_0.05

-i: name of current experiment, can be whatever you like

-l: learning rate

-w: weight of unsupervised loss

-n: max epochs

-d: whether to train, if true, training -> testing -> evaluating; if false, testing -> evaluating

4. Results & Model Weights


🌟🌟 All trained model weights can be downloaded from this link. 🌟🌟


Put the logs directory under the root directory of this repo and set -d False, then you can test and evaluate the models.

4.1 Imbalance SSL on Synapse dataset

Result_IBSSL.png

4.2 SSL on LASeg dataset & UDA on MMWHS dataset

Result_SSL_UDA.png

4.3 SemiDG on M&Ms dataset

Result_SemiDG.png

Citations

If this code is helpful for your study, please cite:

@inproceedings{wang2023towards,
  title={Towards Generic Semi-Supervised Framework for Volumetric Medical Image Segmentation},
  author={Wang, Haonan and Li, Xiaomeng},
  booktitle={Thirty-seventh Conference on Neural Information Processing Systems},
  year={2023}
}

Contact

Haonan Wang (hwanggr@connect.ust.hk)

License

This repository is released under MIT License.