-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathevaluate.py
164 lines (130 loc) · 5.16 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os
import csv
import json
import argparse
import numpy as np
from tqdm import tqdm
from copy import deepcopy
import torch
from torch.utils.data import DataLoader
from skimage.metrics import peak_signal_noise_ratio, structural_similarity
from datasets.dst_gs import CBCT_dataset_gs
from models.model import DIF_Gaussian
from utils import convert_cuda, load_config, sitk_save
def eval_one_epoch(model, loader, npoint=50000, save_dir=None, ignore_msg=True, use_tqdm=False):
model.eval()
results = {}
metrics = {}
metrics_tmp = {key:[] for key in ['psnr', 'ssim']}
if use_tqdm:
loader = tqdm(loader, ncols=50)
with torch.no_grad():
for item in loader:
item = convert_cuda(item)
dst_name = item['dst_name'][0]
name = item['name'][0]
image = item['points_gt'].cpu().numpy()
image = image[0] # W, H, D
pred = model(item, is_eval=True, eval_npoint=npoint) # B, 1, N
output = pred['points_pred']
output = output[0, 0].data.cpu().numpy()
output = output.reshape(image.shape)
output = np.clip(output, 0, 1)
psnr = peak_signal_noise_ratio(image, output, data_range=1.)
ssim = structural_similarity(image, output, data_range=1.)
if not ignore_msg:
print('{}, PSNR: {:.4}, SSIM: {:.4}'.format(
name, psnr, ssim
))
dst_res = results.get(dst_name, [])
dst_met = metrics.get(dst_name, deepcopy(metrics_tmp))
dst_res.append({
'name': name,
'psnr': psnr,
'ssim': ssim,
})
for key in dst_met.keys():
dst_met[key].append(dst_res[-1][key])
results[dst_name] = dst_res
metrics[dst_name] = dst_met
if save_dir is not None:
spacing = item['spacing'][0].cpu().numpy()
origin = item['origin'][0].cpu().numpy()
save_path = os.path.join(save_dir, f'{name}.nii.gz')
sitk_save(save_path, output, spacing=spacing, origin=origin, uint8=True)
for dst_name in metrics.keys():
dst_met = metrics[dst_name]
m = {key:np.mean(val) for key, val in dst_met.items()}
metrics[dst_name] = m
return metrics, results
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='eval')
parser.add_argument('--name', type=str, default='baseline')
parser.add_argument('--dst_name', type=str, default='LUNA16')
parser.add_argument('--epoch', type=int, default=400)
parser.add_argument('--num_views', type=int, default=10)
parser.add_argument('--cfg_path', type=str, default=None)
parser.add_argument('--split', type=str, default='test')
parser.add_argument('--view_offset', type=int, default=0)
parser.add_argument('--out_res_scale', type=float, default=1.0)
parser.add_argument('--eval_npoint', type=int, default=100000)
parser.add_argument('--save_results', action='store_true', default=False)
args = parser.parse_args()
if args.cfg_path is None:
args.cfg_path = f'./logs/{args.name}/config.yaml'
print(args)
cfg = load_config(args.cfg_path)
# -- dataloader
eval_loader = DataLoader(
CBCT_dataset_gs(
dst_name=args.dst_name,
cfg=cfg.dataset,
split=args.split,
num_views=args.num_views,
out_res_scale=args.out_res_scale,
view_offset=args.view_offset,
),
batch_size=1,
shuffle=False,
pin_memory=True
)
# -- model, load ckpt
ckpt_path = f'./logs/{args.name}/ep_{args.epoch}.pth'
ckpt = torch.load(ckpt_path, map_location=torch.device('cpu'))
print('load ckpt from', ckpt_path)
model = DIF_Gaussian(cfg.model)
model.load_state_dict(ckpt)
model = model.cuda()
# -- output dir
tag = '{:.1f}x'.format(args.out_res_scale)
save_dir = None
if args.save_results:
save_dir = f'./logs/{args.name}/results/ep_{args.epoch}/predictions_{tag}'
os.makedirs(save_dir, exist_ok=True)
# -- evaluate
metrics, results = eval_one_epoch(
model,
eval_loader,
args.eval_npoint,
save_dir=save_dir,
use_tqdm=True,
ignore_msg=False
)
print(metrics)
# -- save results [csv]
pred_dir = f'./logs/{args.name}/results/ep_{args.epoch}'
os.makedirs(pred_dir, exist_ok=True)
csv_file = open(os.path.join(pred_dir, f'results_{tag}.csv'), 'w', newline='')
csv_writer = csv.writer(csv_file)
csv_writer.writerow(['dataset', 'obj_id', 'psnr', 'ssim'])
for dst_name in results.keys():
dst_res = results[dst_name]
for res in dst_res:
csv_writer.writerow([dst_name, res['name'], res['psnr'], res['ssim']])
dst_avg = metrics[dst_name]
csv_writer.writerow([dst_name, 'average', dst_avg['psnr'], dst_avg['ssim']])
csv_file.close()
# -- save config [args]
with open(os.path.join(pred_dir, 'args.json'), 'w') as f:
args = vars(args)
json.dump(args, f, indent=4)